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The Future of Neobanking 
Dr. Besarion Abuladze, PhD, MBA 

Professor of Georgian American University 
 

Today we are witnessing the digital revolution, which in the coming decade will totally disrupt the Global 
Banking Sector. Neobanks are part of this revolution.  
 
To be more specific, “change” is the keyword today - the change in the lifestyle of Consumers. The 
lifestyle changes were always occurring due to demographics, technological developments, fluctuating 
financial conditions of consumers and many other factors. However, some additional factors have 
recently accelerated this process, such as the fear for health due to COVID-19 and the consequent 
necessity for isolation.  
 
In any case, the change in lifestyle is affecting the purchasing habits of Consumers. The change in 
purchasing habits of Consumers is manifested at each logical step of purchasing behavior, such as: the 
ways of searching for and getting the information, evaluating alternatives, making purchase decision and 
engaging into the purchasing process itself.  
 
To be successful, the changes in Consumer purchasing behavior should be matched with the adequate 
Customer Value Proposition by the banking service providers, including Neobanks.  
 
But, does the value proposition of the financial services providers (including Neobanks) match the 
changing purchasing habits of Consumers?  
 
To answer this question, we have to start with the definition: “A neobank (also known as an online bank, 
internet-only bank, virtual bank or digital bank) is a type of direct bank that operates exclusively online 
without traditional physical branch networks” [1]. However this is the definition made from the 
perspective of a service provider. Now let’s think from the perspective of a customer. The customer of a 
Neobank receives banking (or neobanking) services wholly online without visiting a branch.  
 
Now, if a reader asks herself or himself - does it matter for me, as a customer, who provides to me the 
online banking services that I need: a truly online bank, or a bank that has some branches, or someone 
that even does not have a full banking license (e.g. payment service providers)? The answer will be: no, 
it does not matter for me, as long as I receive the service I need.  
 
That’s why in this article we are referring to Neobanking (please refer to the title of the present article) 
as to a wholly online banking service provided by different institutions, such as Fintechs and even 
traditional banks.  
 
The forecast is that the market size of the Neobanks (in its traditional definition) will “grow at an annual 
average rate (CAGR) of 53.4 percent until 2030, reaching a value of 2.05 trillion U.S. dollars that year” 
[2]. However, if we use a more broad definition of Neobanking also including the digital banking 
services, then the market size will grow by around 3.6 percent CAGR reaching more than 13 trillion U.S. 
dollars in 2032 [3].  
 
There are approximately 30,000 Fintech companies in the World (October 2022) [4] with the total value 
of investments into the Fintech Sector exceeding 1 trillion U.S. dollars [5]. The extreme competition 
within the industry is intensified because the traditional banks also transfer their products and services 



into digital channels. Take the example of two leading banks in Georgia: the retail offloading ratio of TBC 
Bank was 97% in 2021 [6], while the share of retail transactions through digital channels of Bank of 
Georgia was 96,1% in the same year [7].  
 
The ways how to overcome the above mentioned extreme competition that is taking place in the 
Financial (Fintech) Sector, can be found in the Marketing Principles. Namely, back in 1990’s article – 
“Four P’s Passe; C-words Take Over” [8], Bob Lauterborn introduces the 4 C’s (Customer, Cost, 
Convenience, Communication), which replace the 4 P’s of the original marketing mix concept, as shown 
in Fig. 1 below: 
 

 
Fig. 1 Four P’s of marketing mix is replaced by four C’s 

 
This shift from 4 P’s to 4C’s shows how the digital revolution is affecting the established principles: 
“product” is replaced by “customer”, because mass customization in the digital world allows companies 
to deliver values to customers on an individualized way; “price” is replaced by “cost”, because the 
marginal cost of distributing a digital product is zero; “promotion” is replaced by “communication”, 
because the digital channels allow for direct communication to end users in a cost-effective manner.  
 
The special comment should be devoted to “place”, which is now replaced by “convenience”. As it was 
suggested by Bob Lauterborn in his original article: “Forget place. Think convenience to buy. People 
don't have to go anyplace any more, in this era of catalogs, credit cards and phones in every room” [8]. 
This was said in the era of traditional landline phones, before emergence of mobile phones as a means 
of communication and a way before the smartphones emerged as platforms for receiving all kinds of 
digital products and services.  
 
Today it is easy to shop, to pay, to order food or products, to book, to travel, to receive various kinds of 
digital products and services by using a mobile phone, all done in one place. Is it convenient? Definitely 
it is. That’s how “convenience” has replaced “place”. To summarize, the shift in marketing mix shown in 
Fig. 1 is caused by the changes in consumer behavior, which itself is affected by technological changes.    
 
In order to demonstrate how technological and lifestyle changes may affect the consumer behavior, we 
can resort to historical parallels. The period after the WWII, especially the mid-1950s, experienced the 



increased car ownerships in the USA, which increased the mobility of shoppers. With the increased 
mobility, it became a lifestyle to combine shopping, entertainment and leisure in one trip as it was 
convenient for consumers. The evolved lifestyle has manifested itself in the changed consumer 
behavior. The retailing sector responded to this change with the emergence of shopping malls by means 
of providing all services in one place in a manner convenient for consumers.   
 
Basically, what had happened in the mid of the last century in the USA, is nowadays explained by a so 
called “Blue Ocean Strategy” [9]. It defines the process of “simultaneous pursuit of differentiation and 
low cost to open up a new market space and create new demand. It is about creating and capturing 
uncontested market space, thereby making the competition irrelevant. It is based on the view that 
market boundaries and industry structure are not a given and can be reconstructed by the actions and 
beliefs of industry players” [10].  
 
The Blue Ocean strategy is essentially the adaptation of a business to the shift occurring in consumer 
purchasing behavior. Although this theory was invented after 50 years from the massive occurrence of 
the shopping malls in the USA, it explains the rationale behind the adoption of the shopping malls as 
shown in Fig. 2. At that time the shopping malls differentiated themselves in the eyes of consumers 
(offering all services in one place in a convenient manner) and restructured the cost base for retailers 
(offering lower cost rentals to retailers compared to downtown locations).  
 

 
Fig. 2 Shift in consumer behavior resulted in the emergence of Shopping Malls in the USA 

 
Nowadays, it is convenient for consumers to use their mobile phones for receiving many different 
services - all in one place (that’s how the “convenience” has replaced the “place” in the marketing mix). 
It only remains up to the businesses to adapt to the changed consumer behavior in a most convenient 
way for customers as it can be seen from Fig. 3.   
 

 
 

Fig. 3 Modern-day shift in consumer behavior drives the emergence of Super Apps 
 

In mid-1950s the increased car 
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Now we are in the position to answer the main question posed in this article: does the value proposition 
of the financial services providers (including Neobanks) match the changing purchasing habits of 
Consumers? If we agree that the value for a modern-day consumer is “convenience” by means of 
receiving virtually all services in one place (i.e. in a mobile phone), then the financial service providers 
should respond by creating the respective ecosystems. Is this the case?  
 
The answer is No. Today, the financial services industry is fragmented into digital payments, loyalty 
platforms and neobanking/digital banking services to mention just a few. In addition, there are 
numerous companies offering E-commerce services/marketplaces, which increase the degree of 
defragmentation from the consumers’ perspective. All these services are facing some problems when 
run in isolation as shown in Fig. 4 below:  

 
 

Fig. 4 Problems facing the individual industry players if run in isolation 
 
It then follows that the individual industry players should think about creating more complex 
ecosystems. With such approach they will enhance the value proposition for consumers by offering 
many services in one place (convenience) and at the same time will overcome some of the above 
mentioned problems by means of achieving synergy effects and the economies of scale.  
 
There are many options of incorporating different services into a single ecosystem of services. For 
example, consider loyalty platforms and digital banking. From the above statement of problems (refer to 
Fig. 4 above) let us choose two main dimensions: profit potential per customer and potential of new 
customer acquisition. As a next step, let us compare loyalty platforms and digital banking services with 
each other according to these two dimensions. The comparison is shown in Fig. 5: 
 



 
Fig. 5 Comparison of loyalty platforms and digital banking services 

   
It can be seen from Fig. 5 that loyalty platforms have the highest potential of new customer acquisition 
because of the attractiveness of such programs to many consumers. At the same time the loyalty 
platforms have the lowest margins due to its nature. On the other hand (refer to Fig. 5), we can see that 
neobanks/digital banks have the lowest potential of new customer acquisition due to high competition 
and due to the barriers established by the traditional banks. At the same time the banks have the 
highest profit potential due to a high Customer Lifetime Value (CLV).  
 
Therefore, the solution will be to unify both into a single ecosystem. But in order to originate the 
necessary transactions for banks, one will need to incorporate an additional component into the 
proposed ecosystem. Such component may be a marketplace as shown in Fig.5. 
 

  
 

Fig. 6 The resulting ecosystem 



 
The resulting ecosystem is shown in Fig.6. The business logic behind such ecosystem is the following: 
digital payments functionality will generate a large base of participating companies, as these companies 
look for reducing the transaction fees. Loyalty platforms will generate a large customer base and provide 
customer behavioral information to the participating banks (with the consent of customers). Banks will 
score the customer behavior information and will embed their offerings into the marketplace. As a 
result the banks will be able to issue online loans for consumers shopping at marketplace. The 
customers of the ecosystem will receive all the above mentioned services in one place (convenience). 
The resulting ecosystem will be profitable due to high CLV of banking products and services. 
 
Summary 
In order to summarize the future development of neobanking in just a few words, it can be stated: 
neobanking is the future. A lot of new financial ecosystems will emerge, some of them in partnership 
with the existing banking institutions. The examples of such initiatives can be seen everywhere: Visa and 
Mastercard are becoming digital, Apple and Amazon are incorporating the financial services, Paypal is 
extending its services into the loyalty industry, even Twitter and Google are seeing themselves as 
payment service providers. It only remains to see how these neobanking ecosystems will be reshaped in 
the coming decade.  
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The importance of venture capital in innovative investment projects 

Dali Magrakvelidze 

Georgian Technical University 

E-mail: d.magrakvelidze@gtu.ge 

 

Abstract 

Innovation makes it possible to produce more products with less materials and resources, 

which in turn leads to economic growth. The main problem of financing innovative projects 

is the high risk of returns and long payback. Most of these projects do not have enough 

guarantee funds, their resources are limited, and only their own ideas and technologies are 

the backbone. Due to the high risk of innovative projects, it is necessary to use venture capital 

to finance them. 

 

Key words: Venture capital, venture business, innovation, "valley of death". 

 

* * * * * 

In the modern world, as the population grows, the role of technological innovations in 

meeting human needs increases, as they change the world economy and contribute to the 

economic growth of countries. 

Innovation and entrepreneurship are the kernels of a capitalist economy. New 

businesses, however, are often highly-risky and cost-intensive ventures. As a result, external 

capital is often sought to spread the risk of failure. In return for taking on this risk through 

investment, investors in new companies are able to obtain equity and voting rights for cents 

on the potential dollar. Venture capital, therefore, allows startups to get off the ground and 

founders to fulfill their vision. 

Venture business involves financing new ideas, progressive scientific and technical 

developments and bringing them down to a suitable level for sale, i.e. commercialization. 

Venture business requires a lot of knowledge, a lot of money, and a lot of guts, but if 

successful, it can be hugely profitable. This type of business does not actually exist in our 

country, because we do not have the experience of working with new technologies and risky 

investments, as well as the financial infrastructure. 

Venture capital (VC) is a form of private equity and a type of financing that investors 

provide to startup companies and small businesses that are believed to have long-term 

growth potential. Venture capital generally comes from well-off investors, investment banks, 

and any other financial institutions. 

However, it does not always take a monetary form; it can also be provided in the form 

of technical or managerial expertise. Venture capital is typically allocated to small companies 

with exceptional growth potential, or to companies that have grown quickly and appear 

poised to continue to expand. Venture capital funds manage pooled investments in high-

mailto:d.magrakvelidze@gtu.ge


2 
 

growth opportunities in startups and other early-stage firms and are typically only open to 

accredited investors. 

One important difference between venture capital and other private equity deals, 

however, is that venture capital tends to focus on emerging companies seeking substantial 

funds for the first time, while private equity tends to fund larger, more established 

companies that are seeking an equity infusion or a chance for company founders to transfer 

some of their ownership stakes. 

Venture capital is a subset of private equity (PE). While the roots of PE can be traced 

back to the 19th century, venture capital only developed as an industry after the Second 

World War. 

Harvard Business School professor Georges Doriot is generally considered the "Father 

of Venture Capital." He started the American Research and Development Corporation (ARD) 

in 1946 and raised a $3.5 million fund to invest in companies that commercialized 

technologies developed during WWII. ARDC's first investment was in a company that had 

ambitions to use x-ray technology for cancer treatment. The $200,000 that Doriot invested 

turned into $1.8 million when the company went public in 1955. [3] 

A series of regulatory innovations further helped popularize venture capital as a 

funding avenue. 

The first one was a change in the Small Business Investment Act (SBIC) in 1958. It 

boosted the venture capital industry by providing tax breaks to investors. In 1978, the 

Revenue Act was amended to reduce the capital gains tax from 49% to 28%. 

 Then, in 1979, a change in the Employee Retirement Income Security Act (ERISA) 

allowed pension funds to invest up to 10% of their assets in small or new businesses. This 

move led to a flood of investments from rich pension funds. 

The capital gains tax was further reduced to 20% in 1981. 

These three developments catalyzed growth in venture capital and the 1980s turned 

into a boom period for venture capital, with funding levels reaching $4.9 billion in 

1987.  The dot-com boom also brought the industry into sharp focus as venture 

capitalists chased quick returns from highly-valued Internet companies. According to some 

estimates, funding levels during that period went as high as $30 billion.  But the promised 

returns did not materialize as several publicly-listed Internet companies with high 

valuations crashed and burned their way to bankruptcy. [5] 

The 2008 financial crisis was a hit to the venture capital industry because institutional 

investors, who had become an important source of funds, tightened their purse strings. The 

emergence of startups that are valued at more than a billion dollars, has attracted a diverse 

set of players to the industry. Sovereign funds and notable private equity firms have joined 

the hordes of investors seeking return multiples in a low-interest-rate environment and 

participated in large ticket deals. Their entry has resulted in changes to the venture capital 

ecosystem. Arthur Rock, an investment banker at Hayden, Stone & Co. in New York City 

helped facilitate that deal and subsequently started one of the first VC firms in Silicon Valley. 

Venture Capital has some advantages and disadvantages. Advantages are:  

https://www.investopedia.com/terms/c/capital_gains_tax.asp
https://www.investopedia.com/terms/e/erisa.asp
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Business expertise. Aside from the financial backing obtaining venture capital 

financing can a start-up or young business with a valuable source of guidance and 

consultation. This can help with a variety of business decisions, including financial 

management and human resource management.  

Additional resources. In a number of critical areas, including legal, tax and personnel 

matters, a VC firm can provide active support, all the more important at a key benefits. 

Connections. Venture capitalists are typically well connected in the business 

community. Using these connections can have huge benefits. 

The main disadvantages are: Loss of control and minority ownership status.  

Venture capital provides funding to new businesses that do not have access to stock 

markets and do not have enough cash flow to take debts. This arrangement can be mutually 

beneficial: businesses get the capital they need to bootstrap their operations, and investors 

gain equity in promising companies. 

There are also other benefits to a VC investment. In addition to investment capital, 

VCs often provide mentoring services to help new companies establish themselves, and 

provide networking services to help them find talent and advisors. A strong VC backing can 

be leveraged into further investments. 

On the other hand, a business that accepts VC support can lose creative control l 

over its future direction. VC investors are likely to demand a large share of company equity, 

and they may start making demands of the company's management as well. Many VCs are 

only seeking to make a fast, high-return payoff and may pressure the company for a quick 

exit. 

Venture capital can be broadly divided according to the growth stage of the company 

receiving the investment. Generally speaking, the younger a company is, the greater the risk 

for investors. 

The stages of VC investment are: Pre-Seed: This is the earliest stage of business 

development when the founders try to turn an idea into a concrete business plan. They may 

enroll in a business accelerator to secure early funding and mentorship; Seed Funding: This is 

the point where a new business seeks to launch its first product. Since there are no revenue 

streams yet, the company will need VCs to fund all of its operations; Early-Stage funding: 

Once a business has developed a product, it will need additional capital to ramp up 

production and sales before it can become self-funding. The business will then need one or 

more funding rounds, typically denoted incrementally as Series A, Series B, etc. 

The main problem of financing innovative projects is the high risk of returns and long 

payback. Most of these projects do not have enough guarantee funds, their resources are 

limited, and only their own ideas and technologies are the backbone. The problem of 

financing such enterprises has received the concept of "valley of death" in economics. This is 

manifested in the fact that between the product project part and its launch on the market for 

a long time there are problems in terms of financing, which lead to large cash gaps and, as a 

result, insolvency, which threatens the existence of the project. The cause of the "valley of 
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death" is the different goals of investors and businessmen (developers), the former strive for 

quick profit, and the latter are focused on obtaining scientific results. 

For small businesses, or for up-and-coming businesses in emerging industries, venture 

capital is generally provided by high net worth individuals (HNWIs)—also often known as 

“angel investors"—and venture capital firms. The National Venture Capital Association 

(NVCA) is an organization composed of hundreds of venture capital firms that offer to fund 

innovative enterprises. 

Common occurrence among angel investors is co-investing, in which one angel 

investor funds a venture alongside a trusted friend or associate, often another angel investor. 

While both provide money to startup companies, venture capitalists are typically 

professional investors who invest in a broad portfolio of new companies and provide hands-

on guidance and leverage their professional networks to help the new firm. Angel investors, 

on the other hand, tend to be wealthy individuals who like to invest in new companies 

more as a hobby or side-project and may not provide the same expert guidance. Angel 

investors also tend to invest first and are later followed by VCs. 

Due to the industry's proximity to Silicon Valley, the overwhelming majority of deals 

financed by venture capitalists are in the technology industry—the internet, healthcare, 

computer hardware and services, and mobile and telecommunications. But other industries 

have also benefited from VC funding. 

Venture capital is also no longer the preserve of elite firms. Institutional investors and 

established companies have also entered the fray. For example, tech behemoths Google and 

Intel have separate venture funds to invest in emerging technology.  In 2019, Starbucks also 

announced a $100 million venture fund to invest in food startups. 

Data from the NVCA and PitchBook indicate that venture-backed companies have 

attracted a record $330 billion in 2021, compared to the total of $166 billion seen in 2020—

which was already a record. Large and late-stage investments remain the main drivers 

behind the strong performance: Mega-deals of $100 million or more have already hit a new 

high-water mark. [4] 

Another noteworthy trend is the increasing number of deals with non-traditional VC 

investors, such as mutual funds, hedge funds, corporate investors, and crossover investors. 

Meanwhile, the share of angel investors has gotten more robust, hitting record highs, as well. 

Late-stage financing has become more popular because institutional investors prefer 

to invest in less-risky ventures (as opposed to early-stage companies where the risk of failure 

is high). 

Innovation and entrepreneurship are the kernels of a capitalist economy. New 

businesses, however, are often highly-risky and cost-intensive ventures. As a result, external 

capital is often sought to spread the risk of failure. In return for taking on this risk through 

investment, investors in new companies are able to obtain equity and voting rights for cents 
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on the potential dollar. Venture capital, therefore, allows startups to get off the ground and 

founders to fulfill their vision. 

New companies often don't make it, and that means early investors can lose all of the 

money that they put into it. A common rule of thumb is that for every 10 startups, three or 

four will fail completely. Another three or four either lose some money or just return the 

original investment, and one or two produce substantial returns. 

Depending on the stage of the company, its prospects, how much is being invested, 

and the relationship between the investors and the founders, VCs will typically take between 

25 and 50% of a new company's ownership. 
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ABSTRACT 

 

Globalization has opened the borders of countries, due to which the competition between the companies 

intensified it became necessary to guide and manage not the usual a manager, but a globally minded manager or 

leader. Even today, the question of the phenomenon of leadership is controversial among scientists about, in 

particular, how should he be a leader, with qualities or skills, whether it is possible to learn leadership, etc. 

Cross-Country Perceptions of Leadership Skills and Traits is different. There are different views on it in terms of 

vertical management hierarchy and network structuring. of business network structures clearly influence 

organizational culture he showed us about the leader and leadership. 

In such conditions, when Georgia is also one of the members of the global world, in relation to the compatibility 

of Georgian culture, the issue of how it should be in Georgia should be studied the leader of a functioning 

company, what qualities and skills should have, what features of Georgian culture should he grasp and, finally, 

what should he be able to give for the success of the company "As a victim". 

The world is changing at lightning speed and also at lightning speed public interest in leadership and leaders is 

growing. We all have a certain view of what leadership is, however the exact definition of the term is still difficult. 

Some scientists believe that leadership is the result of successful group dynamics, Others believe that leadership 

is determined by the grandiose efforts of a person. There is also an opinion that the leader is influenced by 

circumstances and necessity creates, however, according to another opinion, leadership a person with qualities is 

always a leader. 

 

It is important to understand that the leadership style or type used by managers or leadership positions in a 

company always has consequences for workers, even if we do not realize it or confuse these consequences with 

the inner personality of each person. It is very important to clarify this, since leaders are agents who believe that 

they are in a privileged position to influence others for better or worse. 

 

American businessman, founder of Microsoft company and CEO (Gates, Bill, n.d.)rightly notes: “We expect 

that in the next century, the leader will be the one who makes others authorized". 

 

Transformational leadership is one of the most modern and popular leadership theories. It was founded in the 80s 

of the 20th century and is "part of the new leadership paradigm" (Peter Guy Northouse, 2010). The theory was 



based on the works of (Bass, B. M., & Riggio, R. E. ., 2006)  (Burton Nanus, Warren G. Bennis, 2006) made 

important contributions to the development of the theory. According to (Bass, B. M., & Riggio, R. E. ., 2006), the 

popularity of transformational theory is likely due to its emphasis on intrinsic motivation and follower 

development. According to this theory, people at the level of change and uncertainty need inspiration and faith 

in themselves. In their (2001) analysis of articles published in the Quarterly Journal of Leadership, Lue and 

Gardner concluded that 1/3 of the studies were about transformational or charismatic leadership. 

Transformational leadership is one of the most comprehensive theories. This is a process that leads to changes 

and transformations in people. It deals with emotions, values, ethics, standards and long-term goals. Also, it 

includes evaluation of followers' motivation. meeting their needs and treating them with respect. According to 

this theory, leaders inspire and motivate followers to do great things and hold followers to high standards. 

According to this approach, the leader must understand and adapt his actions to the needs and motives of the 

followers. In transformational leadership, pseudo-transformational leadership is distinguished, which transforms 

in a negative way. Leaders who experience transformation in a negative way, are self-absorbed, focused on power 

and are carriers of distorted moral values are considered pseudo-transformational. 

Transformational leadership also has some weaknesses. For example, it lacks conceptual clarity, another weakness 

relates to the measurement of transformational leadership. Some transformational factors are correlated with 

transactional and noninterventional leadership factors. It should also be noted that transformational leadership 

does not present clear assumptions about how leaders should act in specific situations. It focuses on ideals, 

inspiration, motivation, innovation and individual care. 

During the same period, the researcher (Bass, 1985) proposed an even more sophisticated version of 

transformational leadership, which was based on the work of (House), but did not completely follow it. He 

believed that transformational leadership can be used in situations where the results are negative. He considered 

transactional and transformational leadership on the same line. (Avolio, 1999), in 1999, referred to 

transformational leadership as improving the performance of followers and realizing their full potential. 

Transactional leadership includes all types of leadership that focus on agreement between leaders and followers. 

It encourages high performance through the use of rewards and punishments. When managers reward 

subordinates for good performance and, conversely, punish them for poor performance, they increase the 

motivation of subordinates to ensure the desired action. 

 

Charismatic leadership is often compared to transformational leadership. As mentioned in the previous 

subsection, charisma was first defined by (Weber, 1974)), who describes it as follows: "It is a personal 

characteristic that gives a person superhuman, outstanding power, it is not available to everyone, it is of divine 

origin, and as a result we get a person who is perceived as a leader. and treated as a leader. Later this theory was 

developed by (House, 1971). the personality characteristics of a charismatic leader developed by (House), which 

include: dominance, a strong desire to influence others, self-confidence, and belief in one's own moral values. 



According to House's charismatic leadership theory, its face-to-face outcome is the follower's trust in the leader's 

ideology. Recognition of the leader without any doubts or questions. 

 

Authentic leadership is one of the newest areas in leadership research. The theory focuses on how "real" and how 

authentic leadership is. There are several definitions of authentic leadership that explain it from different 

perspectives, they are: intrapersonal - processes taking place inside the leader's personality, self-knowledge, self-

regulation, and self-evaluation; Developing - leadership behavior that is formed from the positive psychological 

characteristics and high quality of the leader. This is what is formed in people throughout life. Interpersonal - is 

built on relationships and involves achieving interactions between leaders and followers. It is a two-way process, 

as leaders influence followers and vice versa. 

 

Today, one of the most recognized approaches in the field of leadership research is (House). The theory of 

conformity of means and ends. The essence of this theory lies in what the leader does to motivate subordinates 

to achieve the group and organization's goal. 1. Effective leaders clearly define the goals that subordinates are 

trying to achieve by working; 2. They reward subordinates according to the work done and the goal achieved and 

3. They make clear the path that leads to the work goal. According to this theory, the steps a leader should take 

to motivate subordinates depend on both the subordinates and the type of work performed. In the theory of 

compatibility of the goal and the means, four behaviors of the leader are distinguished: 1. directive behavior; 2. 

Supportive behaviors; 3. complicity behavior; 4. Achievement-oriented behavior. Therefore, leaders must decide 

for themselves which behavior to use during the task to be performed by the subordinate in order to motivate 

them to perform the task. 

 

Leadership concepts address the factors that leaders consider when applying leadership styles and overseeing an 

individual team. These principles focus on the ideas and perceptions about the qualities that leaders should have 

and how they should perform in the role of leader. In addition, leadership concepts help professionals understand 

what kind of skills and character traits they need to develop to advance in leadership roles. 

The concepts of leadership differ from leadership theories in several ways. For example, leadership concepts 

generally serve as a guide for professionals to use in shaping leadership styles, communicating with teams, and 

leading processes. Leadership theories typically focus on the idea of using different methodologies, styles, and 

techniques when leading a team. Leadership concepts include different styles, qualities, and principles of 

employee team management approaches. Essentially, leadership concepts are based on various theories of 

management, and these qualities serve as the standard for effective managers, leaders, and other positional leaders. 

In addition, leadership concepts form the basis of standard management style and behavior theories and often 

include traits such as personality and character, initiative, motivation, influence, decision-making ability.  



According to the studies by  (Kirkpatrick, S.A. and Locke, E.A, 1991)have identified six traits that distinguish 

leaders from others. These are: Attitude, motivation, honesty, self-confidence, cognitive abilities and 

knowledge of the case. They think people with similar traits can be born or acquired over a lifetime They are. 

These 6 traits are exactly the traits that leaders need. These qualities of a leader distinguish people from each 

other and therefore, these differences are an important part of the leadership process.  Also, empirical research 

(Peter G Northouse, 2010) conducted in the 1990s has shown that with social intelligence comprehension of 

feelings, behavior, and thoughts related traits are important traits for an effective leader.  

The discussion of leadership as a trait has aroused great interest among foreign scholars. (Bryman, A, 1992) and 

an analysis by (Ellinger, A. D, 1986)found that personal qualities are closely related to a person’s views on 

leadership. Even according to (Kirkpatrick, S.A. and Locke, E.A, 1991) effective leaders with distinctive 

qualities in some respects there are people. It is interesting to note that in the 1990s leadership as a trait became 

the subject of special attention to those for researchers who are distinguished by visionary, or charismatic 

leadership. These are: (Bass, B. M. , 1985), (Burton Nanus, Warren G. Bennis, 1985), (David A. Nadler, 1989) 

 It will not be uninteresting to discuss all those theories and systematic research devoted to the topic of 

leadership and identifying the characteristics of prominent leaders, since, naturally, the achievements of great 

people lead to universal recognition. 

Followers of The Trait Theory as the starting point of leadership consider the individual characteristics of a 

leader and try to study the leader through these characteristics. This approach known as The Great Man 

Theory. This theory was formulated by Scottish philosopher, writer and teacher Thomas Carlyle. The theory is 

based on two main assumptions: 1) Great leaders are born, they have certain qualities that allows a person to be 

guided, guided and to be promoted; 2) Great leaders emerge when their need arises exists. Significant research 

and agreement have been reached today that leadership comes from a combination of both theories - and more. 

As already mentioned, there is a wide selection of qualities and characteristics of a leader. The University of 

Santa Clara and the Tom Peters Group identified the following leadership characteristics: Honesty - Show 

sincerity, integrity and sincerity in all your actions. Deceptive behavior does not inspire confidence. Competent 

- base your actions on common sense and moral principles. Do not make decisions based on childish emotional 

desires or feelings. Prudent - Set goals and have a vision for the future. The vision should be owned by the 

entire organization. Effective leaders see what they want and how to get it. They usually choose priorities based 

on their core values. Inspiring - Show confidence in everything you do. By displaying mental, physical and 

spiritual endurance you inspire others to reach new heights. Take responsibility if necessary. Intelligent - Read, 

study and search for difficult tasks. Righteous Thinker - Treat all people fairly. Superstition is the enemy of 

justice. Show empathy for the feelings, values, interests, and well-being of others. Broad thinking - seek 



diversity. Brave - have the patience to achieve the goal, despite seemingly insurmountable obstacles. Exercise 

self-confidence in times of stress. Direct - Use common sense to make the right decisions at the right time. 

Imaginative - Make timely and appropriate changes in your thinking, plans and methods. Show creativity by 

thinking of new and better goals, ideas and problems. (John Whitehead, 2016) 

 

Leadership theories study the qualities of effective leaders, including the qualities of effective and influential 

leaders, patterns of behavior, and actions. Leadership theories focus on explaining what makes good leaders by 

focusing on different behaviors and qualities that professionals can develop to become good leaders. While the 

concepts of leadership are qualities in themselves, leadership theories are the study and explanation of these 

qualities and their impact on professionals and their work environment. 

Do not lose sight of the fact that there is no one type of leadership that is universally good or desirable. 

Organizations are characterized by their complexity, and therefore they can undergo changes at various and 

different rates, so you need to know how to adapt to momentary requirements; This also happens through his 

leadership, through the distribution of roles, etc. In all cases, the truth is that a leader is not a leader by tenure: 

leadership is exercised, it is not inherited, something you place in an organization chart. 
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How to Compute the Gradient 
of  the Analytically Unknown 
Value Function

Malkhaz Shashiashvili



Section 1. The Basic Idea of the Research Project

It is well known that vast majority of the real-world optimization problems cannot be solved 

analytically in closed form since they are highly nonlinear by their intrinsic nature.

Denote 𝑉 𝑥 the real−valued Value Function of the optimization problem, where we minimize

corresponding Objective Function 𝐹 𝑥, 𝑧 over certain parametric set 𝑍 and the argument 𝑥

belongs to some domain 𝐷 of the 𝑛-dimensional Euclidean space 𝑅𝑛.

Numerical methods suggest to approximate analytically unknown Value Function 𝑉 𝑥 on a dense 

discrete subset 𝐺 of grid points by the function 𝑉 𝑥, ℎ , where 𝑥 belongs to the discrete grid set 𝐺

and the parameter ℎ shows the “denseness” of 𝐺 with respect to the domain 𝐷 and is defined as 

the smallest positive number satisfying the following condition: for arbitrary point 𝑦 belonging to 

domain 𝐷 one can find a point 𝑥 belonging to the grid set 𝐺 such that 𝑦 − 𝑥 < ℎ.

Many real-world problems also require the approximate computation of the Gradient 𝑔𝑟𝑎𝑑 𝑉 𝑥 , 

that is the vector of all partial derivatives of the function 𝑉 𝑥 . In general it turns out to be very 

difficult problem to construct sophisticated algorithm to approximate 𝑔𝑟𝑎𝑑 𝑉 𝑥 , as the 

corresponding difference quotients start wild oscillations when the parameter ℎ tends to 0 and one 

finds out soon that the latter quotients converge nowhere in the limit.



Our basic observation: The Value function 𝑉 𝑥 of the optimization problem is often convex (or semi 

convex) in multidimensional argument 𝑥 (for example, in engineering thermodynamics it is the 

Convex Envelope of the Gibbs free energy function). Therefore we should use the advantage of 

Convexity to construct convergent numerical approximations to 𝑔𝑟𝑎𝑑 𝑉 𝑥 .

Our basic idea: Assume that 𝑉 𝑥 is a convex function. Replace the approximation 𝑉 𝑥, ℎ by some 

convex approximation C 𝑥, ℎ in a hope that the latter one will better imitate the shape of the 

unknown convex function 𝑉 𝑥 and hence the gradient grad C 𝑥, ℎ can be announced as the 

reasonable approximation to the unknown 𝑔𝑟𝑎𝑑 𝑉 𝑥 !

The clever choice of convex approximation consists in constructing the so called Discrete Convex 

Envelope denoted by 𝐷 𝑐𝑜𝑛𝑣 𝑉 𝑥, ℎ of the function 𝑉 𝑥, ℎ , which is defined on a domain 𝐷 as the 

maximal convex function dominated by the function 𝑉 𝑥, ℎ on a discrete set of grid points 𝐺. The 

construction of the discrete convex envelope is carried out by several algorithms in computational 

geometry and most popular among them is QHULL (the quick hull algorithm for convex hulls), which 

finds the convex hull of arbitrary finite set of points in 𝑛- dimensional Euclidean space 𝑅𝑛 and the 

discrete convex envelope is obtained as a “lower part” of the corresponding convex hull !



Our basic idea seems intuitively reasonable, but it needs rigorous mathematical justification. The 

latter justification has been given in our published paper 

Shashiashvili K., Shashiashvili M. From the uniform approximation of a solution of the PDE to the  

𝐿2-approximation of the gradient of the solution. J. Convex Anal. 21 (2014), no. 1, 237-252, 

where we have given rigorous mathematical justification of our intuitive arguments proving new 

type reverse Poincare inequalities for the difference of two semi convex functions as well as for the 

difference of two convex envelopes of arbitrary continuous objective functions not assuming even 

existence of first order partial derivatives of the latter functions, see Proposition 3.2 and Theorem 3.3 

therein.



Section 2. Convex Envelope Animations











Section 3. The 𝑳𝟐-Approximation of the Gradient of the Semiconvex Function 

through the Convex Envelope

Let 𝑢:𝐷 → 𝑅 be analytically unknown viscosity solution of the nonlinear second order elliptic partial 

differential equation

𝐹 𝑥, 𝑢, 𝑔𝑟𝑎𝑑 𝑢, 𝐻𝑒𝑠𝑠 𝑢 = 0 (3.1)

in a bounded open convex subset 𝐷 of 𝑅𝑛.

As pointed out in the introduction the solution of the equation (3.1) turns out to be semiconvex (or 

semiconcave) function if the latter equation is related to different kind of optimization problems.

Suppose the bounded viscosity solution 𝑢 of equation (3.1) is semiconvex function and we are given 

its uniform continuous numerical approximation 𝑢𝛿: 𝐷 → 𝑅, where 𝛿 is a small parameter, which 

typically measures the mesh size. The objective consists in constructing interior 𝐿2-approximation of 

the unknown Sobolev gradient 𝑔𝑟𝑎𝑑 𝑢 based  on the uniform approximation 𝑢𝛿. Moreover, it  is 

desirable to estimate the gradient’s 𝐿2-error through the 𝐿∞ 𝐷 -uniform error of approximation.

We shall see in this section that such a construction is possible and it uses two ingredients: the energy 

inequality (2.5) in Shashiashvili M. and Shashiashvili K. [9] and the notion of the convex envelope.



The convex envelope 𝑐𝑜𝑛𝑣 𝑢 of a bounded continuous function 𝑢 in 𝐷 is defined as the supremum 

of all convex functions which are majorized by the function 𝑢

𝑐𝑜𝑛𝑣 𝑢 = sup 𝑣 𝑥 : 𝑣 𝑥 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑛 𝐷, 𝑣 𝑥 ≤ 𝑢 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐷 . 3.2

The mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 possesses some nice properties which we prove below

Lemma 3.1. The mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 has Lipschitz property

𝑐𝑜𝑛𝑣 𝑢 − 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 ≤ 𝑢 − 𝑣 𝐿∞ 𝐷 3.3

If only 𝑢, 𝑣 belong to 𝐶 𝐷 ∩ 𝐿∞ 𝐷 .

Proof. Denote

𝑑 = 𝑢 − 𝑣 𝐿∞ 𝐷 ,

Then we have −𝑑 ≤ 𝑢 𝑥 − 𝑣 𝑥 ≤ 𝑑, i.e. 𝑣 𝑥 − 𝑑 ≤ 𝑢 𝑥 , 𝑢 𝑥 − 𝑑 ≤ 𝑣 𝑥 .

Hence we have

𝑐𝑜𝑛𝑣 𝑣 − 𝑑 ≤ 𝑢, 𝑐𝑜𝑛𝑣 𝑢 − 𝑑 ≤ 𝑣.

This means that the convex functions 𝑐𝑜𝑛𝑣 𝑣 − 𝑑 and 𝑐𝑜𝑛𝑣 u − 𝑑 are majorized respectively by 𝑢, 𝑣 .

By the definition of the convex envelope we obtain

𝑐𝑜𝑛𝑣 𝑣 − 𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑢 , 𝑐𝑜𝑛𝑣 𝑢 − 𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑣 ,

i.e. −𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑢 𝑥 − 𝑐𝑜𝑛𝑣 𝑣 𝑥 ≤ 𝑑, thus we derive the inequality (3.3). 



Taking successively 𝑢 = 0 and 𝑣 = 0 in (3.3) we get

ቊ
𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 ≤ 𝑣 𝐿∞ 𝐷 ,

𝑐𝑜𝑛𝑣 𝑢 𝐿∞ 𝐷 ≤ 𝑢 𝐿∞ 𝐷 .
(3.4)

Proposition 3.2. On the space 𝐶 𝐷 ∩ 𝐿∞ 𝐷 the mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 possesses the following

important property

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑣 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥 ≤ 5𝑚𝑒𝑎𝑠 𝐷 ∙ 𝑢 − 𝑣 𝐿∞ 𝐷 𝑢 𝐿∞ 𝐷 + 𝑣 𝐿∞ 𝐷 . 3.5

Proof. We have from the bound (3.4) that the convex functions 𝑐𝑜𝑛𝑣 𝑢 and 𝑐𝑜𝑛𝑣 𝑣 are bounded, 

thus we can apply the energy inequality (2.5) for the latter convex functions and get

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑣 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 ∙ 𝑐𝑜𝑛𝑣 𝑢 − 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 𝑐𝑜𝑛𝑣 𝑢 𝐿∞ 𝐷 + 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 . 3.6

The assertion follows after application of Lemma 3.1 and the bound (3.4). 



Consider now the bounded viscosity solution 𝑢 of the equation (3.1) which is assumed to be 

semiconvex with semiconvexity constant 𝑐 ≥ 0 and its uniform continuous numerical approximation 

𝑢𝛿, i.e.

𝑢𝛿 − 𝑢 𝐿∞ 𝐷 𝛿⟶0
0. 3.7

Further consider the bounded continuous functions

𝑢 + 𝑐 ∙ 𝑣0 and 𝑢𝛿 + 𝑐 ∙ 𝑣0 (3.8)

and their convex envelopes

conv 𝑢 + 𝑐 ∙ 𝑣0 and 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 , (3.9)

where

𝑣0 𝑥 =
1

2
∙ 𝑥 2.

The next proposition is the main result of Section 3.



Theorem 3.3. The following weighted 𝐿2-estimate is valid for the unknown 𝑔𝑟𝑎𝑑 𝑢 through the function 

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑐 ∙ 𝑣0

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑐 ∙ 𝑣0 − 𝑔𝑟𝑎𝑑 𝑢 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 2 𝑢 𝐿∞ 𝐷 + 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 + 2𝑐 𝑣0 𝐿∞ 𝐷 . (3.10)

Proof. Let us apply Proposition 3.2 to the functions uδ + c ∙ v0 and 𝑢 + 𝑐 ∙ 𝑣0 , we shall have

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0
2 ∙

𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 𝑢𝛿 + 𝑐 ∙ 𝑣0 𝐿∞ 𝐷 + 𝑢 + 𝑐 ∙ 𝑣0 𝐿∞ 𝐷 . (3.11)

By the semiconvexity criteria (2.3) in Shashiashvili M. and Shashiashvili K. [9] we have that the function

𝑢 + 𝑐 ∙ 𝑣0 is convex and therefore coincides with its convex envelope 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0 , hence we get

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0 = 𝑔𝑟𝑎𝑑 𝑢 + 𝑐 ∙ 𝑣0 = 𝑔𝑟𝑎𝑑 𝑢 + 𝑔𝑟𝑎𝑑 𝑐 ∙ 𝑣0 ,

the rest is obvious. 

Thus the 𝐿2-approximation problem of the unknown 𝑔𝑟𝑎𝑑 𝑢 is reduced to the efficient numerical 

computation of convex envelope 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 and its gradient. We note here that if the solution of 

PDE (3.1) is convex the unknown 𝑔𝑟𝑎𝑑 𝑢 is approximated by the 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 .



Section 4. Computation of the Gradient of the Solution of Monge-Ampere 

Partial Differential Equation in a Planar Domain

We discuss next the Monge-Ampere equation. The Monge-Ampere equation is a fully nonlinear elliptic 

PDE. Applications of the Monge-Ampere equation appear in the classical problem of prescribed 

Gauss curvature and in the problem of optimal mass transportation (with quadratic cost).

We shall present a simple (nine point stencil) finite difference method which performs well for smooth 

as well as for singular solutions. The Monge-Ampere PDE in a planar domain 𝐷 ⊂ 𝑅2 is the following

𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 𝑈 𝑥 = 𝑓 𝑥 , 𝑓 𝑥 ≥ 0,

or equivalently

𝜕2𝑢

𝜕𝑥2
∙
𝜕2𝑢

𝜕𝑦2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦

2

= 𝑓 with Dirichlet boundary conditions 𝑢 = 𝑔 on 𝜕𝐷 (4.1)

and the additional convexity constraint

𝑢 𝑥, 𝑦 is convex in 𝐷, (4.2)

which is required for the equation to be elliptic. Without the convexity constraint this equation does 

not have a unique solution. For example, taking the boundary function 𝑔 = 0, if 𝑢 is a solution, then −𝑢

is also a solution.



The numerical method involves simply discretizing the second derivatives using standard central 

differences on a uniform Cartesian grid. The result is

𝐷𝑥𝑥
2 𝑢𝑖𝑗 ∙ 𝐷𝑦𝑦

2 𝑢𝑖𝑗 − 𝐷𝑥𝑦
2 𝑢𝑖𝑗

2
= 𝑓𝑖𝑗 , (4.3)

where

𝐷𝑥𝑥
2 𝑢𝑖𝑗 =

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 − 2𝑢𝑖𝑗

ℎ2
,

𝐷𝑦𝑦
2 𝑢𝑖𝑗 =

𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 2𝑢𝑖𝑗

ℎ2
,

𝐷𝑥𝑦
2 𝑢𝑖𝑗 =

𝑢𝑖+1,𝑗+1 + 𝑢𝑖,𝑗−1 − 𝑢𝑖−1,𝑗+1 − 𝑢𝑖−1,𝑗−1

4ℎ2
.

(4.4)

Introduce the notation

𝑎1 =
𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗

2
, 𝑎2 =

𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1

2
, 𝑎3 =

𝑢𝑖+1,𝑗+1 + 𝑢𝑖,𝑗−1

2
, 𝑎4 =

𝑢𝑖−1,𝑗+1 + 𝑢𝑖−1,𝑗−1

2
(4.5)

and rewrite (4.3) as a quadratic equation for 𝑢𝑖𝑗:

4 𝑎1 − 𝑢𝑖𝑗 𝑎2 − 𝑢𝑖𝑗 −
1

4
𝑎3 − 𝑎4

2 = ℎ4𝑓𝑖𝑗 . (4.6)



Now solving for 𝑢𝑖𝑗 and selecting the smaller one (in order to select the locally convex solution), we 

obtain

𝑢𝑖𝑗 =
1

2
𝑎1 + 𝑎2 −

1

2
𝑎1 − 𝑎2

2 +
1

4
𝑎3 − 𝑎4

2 + ℎ4𝑓𝑖𝑗 . 4.7

We can now use Gauss-Seidel iteration to find the fixed point of (4.7).

The Dirichlet boundary conditions are enforced at boundary grid points. The convexity constraint 

(4.2) is not enforced (beyond the selection of the positive root in (4.7).

Next we consider two exact solutions for the Monge-Ampere PDE (4.1), (4.2) on the square

0,1 × 0,1 .



Example 4.1.

൞
𝑢 𝑥, 𝑦 = exp

𝑥2 + 𝑦2

2
,

𝑓 𝑥, 𝑦 = 1 + 𝑥2 + 𝑦2 ∙ exp 𝑥2 + 𝑦2 .

Example 4.2.

𝑢 𝑥, 𝑦 =
2 2

3
𝑥2 + 𝑦2 Τ3 4,

𝑓 𝑥, 𝑦 =
1

𝑥2 + 𝑦2
.

In this example the function 𝑓 blows up at the boundary point 0,0 .

We note that we use fast algorithm to accelerate computations in the finite difference method 

(4.3)-(4.7). 



Figure 1



Figure 2

The Monge-Ampere equations (the Examples 4.1 and 4.2) are considered on the square 0,1 × 0,1 .



In the tables below for the different grid points we compute the number of iterations, the 

computation times, the errors of approximation of the exact solution and of the exact gradient.

Computation times and errors for the exact solution and its gradient for the Example 4.1 on an 𝑁 × 𝑁

grid:

#
Number 

of iterations

Computation 

times

Uniform error 

for the exact solution

Uniform error 

for the exact 

gradient

𝑳𝟐-error 

for the exact 

gradient

21 1362 1 sec. 1.5 × 10−4 0.1255 0.011

61 10840 10 sec. 1.8 × 10−5 0.0441 0.0038

101 28764 60 sec. 6.7 × 10−6 0.0267 0.0023

141 54802 300 sec. 3.4 × 10−6 0.0192 0.0016



Computation times and errors for the exact solution and its gradient for the Example 4.2 on an grid:

#
Number 

of iterations

Computation 

times

Uniform error 

for the exact solution

Uniform error 

for the exact 

gradient

𝑳𝟐-error 

for the exact 

gradient

21 1397 1 sec. 1.5 × 10−4 0.1511 0.0077

61 11065 10 sec. 1 × 10−4 0.0887 0.0027

101 29312 70 sec. 4.9 × 10−5 0.0689 0.0016

141 55768 300 sec. 2.9 × 10−5 0.0583 0.0011



We give the surface plots (for Examples 4.1 and 4.2) of the following functions:

a) the exact solution,

b) finite difference numerical approximation,

c) the convex envelope of the numerical approximation,

d) partial derivative w.r. to 𝑥 of the exact solution,

e) partial derivative w.r. to 𝑦 of the exact solution,

f) partial derivative w.r. to 𝑥 of the convex envelope,

g) Partial derivative w.r. to 𝑦 of the convex envelope.



Section 5. Pricing and Hedging of American Options written on Multiple Assets

In this section we study the multidimensional parabolic obstacle problem and its relation to the 

pricing and hedging of American options written on multiple assets. We shall consider the so called 

strong solutions of parabolic obstacle problem that have been studied, for example, in Friedman 

[3, Chapter 1].  Strong solutions have second order Sobolev (weak) derivatives so that the Partial 

Differential Equation (PDE) can be written pointwisely a.e., strong solutions should be preferable in 

financial applications because of their better regularity properties.

The above obstacle problem appears naturally in the valuation of American type Claims in 

financial market. The obstacle is the so called payoff function and the solution of the obstacle 

problem is the value function of the American option written on multiple assets. A good 

background study is given in the paper by Broadie and Detemple [1]. 

The semiconvexity is a natural property of a large class of value functions of the optimization 

problems (see, for instance, Cannarsa and Sinestrari [2]). 

This convexity (semiconvexity) of the value function of the American option for arbitrary fixed time 

instant is the starting point of our new method of the construction of the nearly optimal discrete 

time delta hedging strategies for American options.



American option can be exercised by its holder (as an opposite to European option) at any time up 

to and including expiry. This makes their pricing mathematically challenging and few closed form 

solutions have been found. American options are important because they are very widely traded.  

At least as important as the pricing of American options are the hedging issues that are crucial for 

the writer of the option. 

In this section we study the parabolic obstacle problem in the strong sense. More precisely, we     

seek a solution 𝑢 𝑥, 𝑡 , which belongs to the parabolic Sobolev space (see, for example, Krylov [6, 

Chapter 2]) and satisfies a system of inequalities

ቊ
𝐿𝑢 𝑥, 𝑡 ≤ 0, 𝑢 𝑥, 𝑡 ≥ 𝑔 𝑥 ,

𝐿𝑢 𝑥, 𝑡 ∙ 𝑢 𝑥, 𝑡 − 𝑔 𝑥 = 0
(5.1)

𝑑𝑥 × 𝑑𝑡 with terminal condition

𝑢 𝑥, 𝑇 = 𝑔 𝑥 , (5.2)

where 𝑔 𝑥 , 𝑥 ∈ 𝑅𝑛 is a given non-negative continuous function representing an obstacle and 𝐿𝑢 is 

the second order linear parabolic differential operator

𝐿𝑢 𝑥, 𝑡 = 

𝑖,𝑗=1

𝑛

𝑎𝑖𝑗 𝑥, 𝑡 ∙
𝜕2𝑢 𝑥, 𝑡

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝑖=1

𝑛

𝑏𝑖 𝑥, 𝑡 ∙
𝜕𝑢 𝑥, 𝑡

𝜕𝑥𝑖
− 𝑟 𝑡 ∙ 𝑢 𝑥, 𝑡 +

𝜕𝑢 𝑥, 𝑡

𝜕𝑡
, (5.3)



when the obstacle 𝑔 𝑥 is non-smooth there are not many known techniques to be used in the study 

of the obstacle problem. Our objective is to develop some new results for the nonsmooth case, with 

focus on applications to American type options written on multiple assets, which is an active 

research area at present in mathematical finance.

We will consider the pricing and hedging of multidimensional American options in a financial market 

driven by a general multidimensional Ito diffusion. The American option is a financial contract, 

assuming a time horizon of 𝑇 > 0 and a market consisting of 𝑛 assets 𝑆 𝑡 = 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 giving a 

payoff at time 𝑡 equal to Ψ 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 where Ψ 𝑥 is a non-negative continuous function from 𝑅+
𝑛

to 𝑅+ defining the contract. The American option corresponding to this claim gives the owner of the 

option the right (but not the obligation) to exercise the option at any time 𝜏, 0 ≤ 𝜏 ≤ 𝑇. At the 

exercise time 𝜏, the owner of the option receives an amount equal to Ψ 𝑆 𝜏 . We suppose the 

existence of a positive and continuous instantaneous interest rate 𝑟 𝑡 and also of the dividend rates 

𝑑𝑖 𝑡 of the assets 𝑆𝑖 𝑡 , 𝑖 = 1, … , 𝑛.



We assume that there exists a risk-neutral martingale measure 𝑄, such that with respect to 𝑄 the 

logarithms of the prices 𝑋 𝑡 = ln 𝑆1 𝑡 , … , ln 𝑆𝑛 𝑡 solve a system of stochastic differential 

equations

𝑑𝑋 𝑡 = 𝑏 𝑋 𝑡 , 𝑡 ∙ 𝑑𝑡 + 𝜎 𝑋 𝑡 , 𝑡 ∙ 𝑑𝑊 𝑡 , 𝑋 0 = 𝑥, 0 ≤ 𝑡 ≤ 𝑇, 5.4

where

𝑏𝑖 𝑥, 𝑡 = 𝑟 𝑡 − 𝑑𝑖 𝑡 −
1

2


𝑘=1

𝑛

𝜎𝑖𝑘
2 , 𝑖 = 1, … , 𝑛, (5.5)

Here 𝑊 𝑡 = 𝑊1 𝑡 , … ,𝑊𝑛 𝑡 is a standard 𝑛- dimensional Brownian motion with respect to the 

filtration 𝔍𝑡 0≤𝑡≤𝑇 defined on a probability space Ω, 𝔍, 𝑄 , 𝜎 𝑥, 𝑡 = 𝜎𝑖𝑗 𝑥, 𝑡
𝑖,𝑗=1,…,𝑛

, where 

𝑎𝑖𝑗 𝑥, 𝑡 =
1

2


𝑘=1

𝑛

𝜎𝑖𝑘 𝑥, 𝑡 ∙ 𝜎𝑗𝑘 𝑥, 𝑡 . (5.6)



We will assume that the operator 𝐿𝑢 is uniformly parabolic in the sense that there exists 𝜆 > 0 such that



𝑖,𝑗=1

𝑛

𝑎𝑖𝑗 𝑥, 𝑡 ∙ 𝜉𝑖 ∙ 𝜉𝑗 ≥ 𝜆 ∙ 𝜉 2, whenever 𝑥, 𝑡 ∈ 𝑅𝑛 × 0, 𝑇 and 𝜉 ∈ 𝑅𝑛. 5.7

We will assume also that the functions 𝑏 𝑥, 𝑡 and 𝜎 𝑥, 𝑡 are bounded and Lipschitz continuous, that is, 

there exists a constant 𝑐 > 0 such that for all 𝑥, 𝑥 ∈ 𝑅𝑛 and 𝑠, 𝑡 ∈ 0, 𝑇 we have

𝜎 𝑥, 𝑡 − 𝜎 𝑥, 𝑠 + 𝑏 𝑥, 𝑡 − 𝑏 𝑥, 𝑠 ≤ 𝑐 ∙ 𝑥 − 𝑥 + 𝑡 − 𝑠 . (5.8)

We will impose the basic assumption on the payoff function: 

Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛 is a nonnegative Lipschitz continuous convex function. (5.9)

Denote 𝑉 𝑥, 𝑡 , 𝑥 ∈ 𝑅+
𝑛, 0 ≤ 𝑡 ≤ 𝑇, the value function of the American option at time 𝑡, if the underlying 

assets are trading at 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 = 𝑥1, … , 𝑥𝑛 . Then it is well known that 

𝑢 𝑥, 𝑡 = 𝑉 exp 𝑥 , 𝑡 , 𝑥 ∈ 𝑅𝑛, 0 ≤ 𝑡 ≤ 𝑇, 5.10

is a unique solution of the parabolic obstacle problem (5.1), (5.2) with the obstacle function  

𝑔 𝑥 = Ψ exp 𝑥 , 𝑥 ∈ 𝑅𝑛, (5.11)



The convexity (semiconvexity) of the value function 𝑉 𝑥, 𝑡 of the American option for arbitrary fixed 

time instant 𝑡 is the crucial point for our new device of the construction of the nearly optimal discrete 

time delta hedging strategies for American options written on multiple assets. 

Indeed recently in the paper by Shashiashvili M. and Shashiashvili K. [9], we have developed a novel 

devise of numerical computation of the gradient of the analytically unknown function provided that 

the latter function is convex (or semiconvex) and we have already constructed its some uniform 

approximation. It is based on a new weighted inequality in Mathematical Analysis found by us 

(called otherwise the reverse Poincare inequality) for the difference of two semiconvex functions.

In this project we investigate the discrete time hedging problem for the American option written on 

the multiple underlying assets S 𝑡 = 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 and having a nonnegative convex 

payoff function Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛.

It is a classical  mathematical result at present (see, for example, Karatzas and Shreve [5, Chapter 2]) 

that for the perfect hedging in continuous time the writer of the option should construct the so called 

delta-hedging portfolio, which means that at an arbitrary time instant the should hold 𝑔𝑟𝑎𝑑 𝑉 𝑆 𝑡 , 𝑡

units of the underlying assets, where 𝑉 𝑥, 𝑡 denotes the value function of the American option and 

𝑔𝑟𝑎𝑑 𝑉 𝑥, 𝑡 is a vector of its partial derivatives with respect to the components of its multidimensional 

space argument 𝑥, 𝑥 ∈ 𝑅+
𝑛. 



But the perfect hedging in continuous time requires the continuous rebalancing of the writer’s 

portfolio in the underlying assets and the money market account, which is impossible in practice. In 

reality, the writer trades only at some discrete instants of time at which he rebalances his portfolio. 

Moreover, the delta-hedging requires the knowledge of the gradient 𝑔𝑟𝑎𝑑 𝑉 𝑥, 𝑡 of the value 

function 𝑉 𝑥, 𝑡 , but the explicit form neither of the value function, nor of its partial derivatives is 

known even in the simplest Black-Sholes model for American put option with finite horizon 𝑇 > 0.

Several approximation methods were devised in order to compute the value function of the 

American option. In particular, finite difference methods were developed in Wilmott, Dewynne, 

and Howison [10], and Jaillet, Lamberton, and Lapeyre [4]. We assume here that we have already 

been given some continuous in the argument 𝑥 uniform approximation 𝑉ℎ 𝑥, 𝑡 to the unknown 

value function 𝑉 𝑥, 𝑡 of the American option at the equidistant rebalancing times 𝑡𝑘 = 𝑘 ∙ 𝛿, 𝛿 =
𝑇

𝑁
, 

𝑘 = 0,1, … , 𝑁 (for example, the Bermudan option value function approximation), where ℎ is a certain 

small parameter indicating the error of approximation. In particular, we assume that the following 

bound is valid uniformly in 𝑘, 𝑘 = 0,1, … , 𝑁,

sup𝑥∈𝑅+𝑛 𝑉ℎ 𝑥, 𝑡𝑘 − 𝑉 𝑥, 𝑡𝑘 ≤ 𝑐 ∙ ℎ, 𝑘 = 0,1, … , 𝑁, (5.12)

Here 𝑐 is some positive constant depending on the parameters of our model and the payoff 

function Ψ 𝑥 and we naturally assume that 

𝑉ℎ 𝑥, 𝑇 = Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛. (5.13)



Our hedging method consists in the following:  for each function 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, consider first its  

convex envelope 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, which is the maximal convex function dominated by the 

given function 𝑉ℎ 𝑥, 𝑡𝑘 and then its gradient 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁. Now the discrete time 

hedge 𝐷𝛿,ℎ 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 can be defined in the following manner

𝐷𝛿,ℎ 𝑡 = 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ S 𝑡𝑘 , 𝑡𝑘 if 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑘 = 1, … , 𝑁 − 1 . (5.14)

Our basic idea is to use the latter discrete time hedge as a reasonable approximation to the 

unknown continuous time optimal delta-hedge    

𝐷 𝑡 = 𝑔𝑟𝑎𝑑 𝑉 𝑆 𝑡 , 𝑡 , 0 ≤ 𝑡 ≤ 𝑇. (5.15)

Denote Π𝛿,ℎ 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 the value process of the discrete time hedging portfolio and Π 𝑡 , 0 ≤ 𝑡 ≤ 𝑇, 

respectively, the value process of continuous time optimal delta-hedging portfolio. Then the error 

due to our discrete time hedge is equal to

𝐸𝑄sup0≤𝑡≤𝑇 Π𝛿,ℎ 𝑡 − Π 𝑡 . (5.16)

One of the objectives of this research project consists in estimating the latter error for American 

options written on multiple assets and proving that it converges to zero when discretization 

parameters 𝛿 and ℎ tend to zero. We should note here that this program has been successfully 

carried out in one dimensional case for Black-Sholes model in Shashiashvili and Hussain [7]. The 

estimation of the error (5.16) for multi asset American option problem will heavily rely on the 

weighted reverse Poincare inequalities in 𝑅𝑛 and 𝑅+
𝑛 and therefore proving such kind of inequalities is 

one of the objectives of this research project. We formulate the latter inequality in 𝑅𝑛.



Let 𝑈 𝑥 and 𝑉 𝑥 be two semiconvex functions in 𝑅𝑛 with the semiconvexity constants 𝑐𝑈 and 𝑐𝑉, 

respectively (see Cannarsa and Sinestrari [2, Chapter 1, Definition 1.1.1]) and 𝐻 𝑥 be a nonnegative 

twice continuously differentiable weight function. Then the following weighted reverse Poincare 

inequality should be valid (under certain conditions on 𝑈 𝑥 , 𝑉 𝑥 and 𝐻 𝑥 ) for the difference      

𝑈 𝑥 − 𝑉 𝑥

න

𝑅𝑛

𝑔𝑟𝑎𝑑 𝑈 𝑥 − 𝑔𝑟𝑎𝑑 𝑉 𝑥 2 ∙ 𝐻 𝑥 𝑑𝑥

≤ 𝑐 𝑈 − 𝑉 𝐿∞ 𝑅𝑛 න

𝑅𝑛

𝑈 𝑥 + 𝑉 𝑥 + 𝑚𝑎𝑥 𝑐𝑈 , 𝑐𝑉 ∙ 𝑥 2 ∙ Δ𝐻 𝑥 𝑑𝑥 , (5.17)

where Δ denotes the Laplace operator and 𝑐 is the absolute constant. 
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1 Introduction

In a number of papers[1,2] Adomian develops a numerical technique using
special kinds of polynomials for solving non-linear functional equations. How-
ever, Adomian and his collaborators did not develop widely the problem of
convergence.

In this article we will study by Adomian technique some kind of quadratic
backward martingale equation and prove the convergence of the series. For
example we tackle an equation of the form

ET (m)EαT (m⊥) = c exp{η} (1)

w.r.t. stochastic integrals m =
∫
fsdWs, m

⊥ =
∫
gsdW

⊥
s and real number c,

where (W,W⊥) is 2-dimension Brownian Motion and η is a random variable.

1



Equations of such type are arising in mathematical finance and they are
used to characterize optimal martingale measures (see, Biaginiat at al (2000),
Mania and Tevzadze (2000), (2003),(2006)). Note that equation (1) can be
applied also to the financial market models with infinitely many assets (see
M. De Donno at al (2003)). In Biagini at al (2000) an exponential equation
of the form

ET (m)

ET (m⊥)
= ce

∫ T
0 λ2sds

was considered (which corresponds to the case α = −1 ).
Our goal is to show the solvability of the equation (1) using the Ado-

mian method proving the convergence of series. On the one hand, a sim-
pler proof of solvability is obtained. On the other hand, it allows to obtain
the approximation of the solution. It is possible to find a solution in the
form of series, if we define a sequence of martingales w.r.t. the measure
ET (
∑n

i mi+
∑n

i m
⊥
i )·P from equations c′ET (m′n+1+m′⊥n+1) = E2T (m′⊥n ), where

m′n+1 = mn+1 − 〈mn+1,
∑n

i ,mi〉, m′⊥n+1 = m⊥n+1 − 〈m⊥n+1,
∑n

i m
⊥
i 〉, and then

we write down the solution

m =
∞∑
k

mk, m
⊥ =

∞∑
k

m⊥k

provided the series are convergent. The proof of the convergence is greatly
simplified if we present equation as a BSDE in the space of BMO-martingales
and use the properties of the BMO-norm. The result is resumed in Theorem
1.

Finally we provide some examples, exactly solvable by Adomian series
and also example non-solvable at all.

2 The main result

Let (Ω,F , P ) be a probability space with filtration F = (Ft, t ∈ [0, T ]). We
assume that all local martingales with respect to F are continuous. Here T
is a fixed time horizon and F = FT .

LetM be a stable subspace of the space of square integrable martingales
H2. Then its ordinary orthogonalM⊥ is a stable subspace and any element
of M is strongly orthogonal to any element of M⊥ (see, e.g. [5], [6]).

We consider the following exponential equation

ET (m)EαT (m⊥) = c exp{η}, (2)

2



where η is a given FT -measurable random variable and α is a given real
number. A solution of equation (2) is a triple (c,m,m⊥), where c is strictly
positive constant, m ∈ M and m⊥ ∈ M⊥. Here E(X) is the Doleans-Dade
exponential of X.

It is evident that if α = 1 then equation (2) admits an ”explicit” solution.
E.g., if α = 1 and η is bounded, then using the unique decomposition of the
martingale E(exp{η}/Ft)

E(exp{η}/Ft) = E exp{η}+mt(η) +m⊥t (η), m(η) ∈M, m⊥(η) ∈M⊥,
(3)

it is easy to verify that the triple c = 1
E exp{η} ,

mt =

∫ t

0

1

E(exp{η}/Fs)
dms(η), m⊥t =

∫ t

0

1

E(exp{η}/Fs)
dm⊥s (η)

satisfies equation (2).
Our aim is to prove the existence of a unique solution of equation (2) for

arbitrary α 6= 0 and η of a general structure, assuming that it satisfies the
following boundedness condition:

B) η is an FT -measurable random variable of the form

η = η̄ + γAT , (4)

where η̄ ∈ L∞, γ is a constant and A = (At, t ∈ [0, T ]) is a continuous
F -adapted process of finite variation such that

E(varT (A)− varτ (A)/Fτ ) ≤ C

for all stopping times τ for a constant C > 0.
One can show that equation (2) is equivalent to the following semimartin-

gale backward equation with the square generator

Yt = Y0 −
γ

2
At − 〈L〉t −

1

α
〈L⊥〉t + Lt + L⊥t , YT =

1

2
η̄. (5)

We use also the equivalent equation of the form

LT + L⊥T = c+ 〈L〉T +
1

α
〈L⊥〉T +

γ

2
AT .

w.r.t. (c, L, L⊥).

3



We use notations |M |
BMO

= inf{C : E
1
2 (〈M〉T − 〈M〉τ |Fτ ) ≤ C} for

BMO-norms of martingales, |A|ω = inf{C : E(varTt (A)|Ft) ≤ C} for norms
of finite variation processes and A ·M for stochastic integrals.

Let us consider the system of semimartingale backward equations

Y
(0)
t = Y

(0)
0 − γ

2
At + L

(0)
t + L

(0)⊥
t , Y

(0)
T =

1

2
η̄,

Y
(n+1)
t = Y

(n+1)
0

−
n∑
k=0

〈L(k), L(n−k)〉t −
1

α

n∑
k=0

〈L(k)⊥, L(n−k)⊥〉t + L
(n+1)
t + L

(n+1)⊥
t ,

Y
(n+1)
T = 0.

The sequence Y
(n)
0 = c(n), L(n) + L⊥(n), n = 0, 1, 2, · · · can be defined conse-

quently by the equations

E(η|Ft) +
γ

2
E(AT |Ft) = c(0) + L

(0)
t + L

⊥(0)
t ,

n∑
k=0

E(〈L(k), L(n−k)〉T |Ft)−
1

α

n∑
k=0

E(〈L(k)⊥, L(n−k)⊥〉T |Ft)

= c(n+1) + L
(n+1)
t + L

⊥(n+1)
t .

Remark. If At =
∫ t
0
a(s,Ws, Bs)ds, then the solution of (5) is of the form

Yt = v(t,Wt, Bt), where v(t, x, y) is decomposed as series
∑

n v
n(t, x, y) sat-

isfying the system of PDEs

(∂t +
1

2
∆)v0(t, x, y) + a(t, x, y) = 0, v0(T, x, y) = 0,

(∂t +
1

2
∆)vn(t, x, y)

+
1

2

n−1∑
k=0

(vkx(t, x, y)vn−k−1x (t, x, y) + αvky(t, x, y)vn−k−1y (t, x, y)) = 0,

vn(T, x, y) = 0, n ≥ 1.

Lemma 1. Let
Yt = Y0 + At +mt, YT = η,

where m is a martingale, η ∈ L∞ and |A|ω <∞. Then m ∈ BMO and

|m|
BMO
≤ |η|∞ + |A|ω. (6)
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In particular, if |A|ω <∞ then the martingale E(AT |Ft) belongs to the BMO
space and

|E(AT |F.)|BMO
≤ |A|ω.

Proof. By the Ito formula

Y 2
t = 2

∫ t

0

Ysdms + 2

∫ t

0

YsdAs + 〈m〉t.

Taking the difference Y 2
τ − Y 2

T and conditional expectations we have that

Y 2
τ + E(〈m〉T − 〈m〉τ |Fτ ) = E(η2|Fτ )− 2E(

∫ T

τ

YsdAs|Fτ ) ≤

≤ |η|2∞ + 2|Y |∞|A|ω. (7)

E(
∫ T
τ
Ysdms|Fτ ) = 0, since Yt ≤ E(η + |AT − At||Ft) is bounded and m is a

martingale. Since the right-hand side of (7) does not depend on τ from (7)
we obtain

|Y |2∞ + ||m||2BMO ≤ |η|2∞ + |Y |2∞ + |A|2ω.

Therefore
||m||2BMO ≤ |η|2∞ + |A|2ω,

which implies inequality (6).

Lemma 2. For the BMO norms of martingales L(n) + L⊥(n), defined
above, the following estimates are true

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
, (8)

where the coefficients an are calculating recurrently from

a0 = 1, an+1 =
n∑
k=0

akan−k.

Proof. Using Lemma 1 it is easy to show that

|L(1) + L⊥(1)|
BMO
≤ a1(1 + |β|)|L(0) + L⊥(0)|2

BMO
,

|L(2) + L⊥(2)|
BMO
≤ a2(1 + |β|)2|L(0) + L⊥(0)|3

BMO
.

5



Assume that inequality (8) is valid for any k ≤ n and let us show that

|L(n+1) + L⊥(n+1)|
BMO
≤ an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2

BMO
. (9)

Applying Lemma 1 for Y
(n+1)
t and the Kunita-Watanabe inequality we have

|L(n+1) + L⊥(n+1)|
BMO
≤

≤ ess sup
τ

n∑
k=0

E(varTτ (
n∑
k

〈L(k), L(n−k)〉+ β〈L⊥(k), L⊥(n−k)〉)|Fτ )

≤
n∑
k=0

ess sup
τ

E
1
2 (varTτ 〈L(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

+|β|
n∑
k=0

ess sup
τ

E
1
2 (varTτ 〈L⊥(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

≤
n∑
k

|L(k)|
BMO
|L(n−k)|

BMO
+ |β||L⊥(k)|

BMO
|L⊥(n−k)|

BMO

≤ (1 + |β|)
n∑
k=0

|L(k) + L⊥(k)|
BMO
|L(n−k) + L⊥(n−k)|

BMO
. (10)

Therefore, from (10), using inequalities (8) for any k ≤ n, we obtain

|L(n+1) + L⊥(n+1)|
BMO
≤

≤ (1+|β|)
n∑
k=0

ak(1+|β|)k|L(0)+L⊥(0)|k+1
BMO

an−k(1+|β|)n−k||L(n−k)+L⊥(n−k)|n−k+1
BMO

≤ (1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

n∑
k=0

akan−k =

= an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

and the validity of inequality (8) follows by induction.

Theorem 1. The series
∑

n≥0(L
(n) +L⊥(n)) is convergent in BMO-space,

if γ and |η̄|∞ are small enough and the sum of series is a solution of the
equation (5).
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Proof. Without loss of generality assume that η = 0. Using the lemma 2
we get

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
≤ an(1 + |β|)n|γA|n+1

ω .

By lemma 3 of appendix, since

limn→∞
n
√
an = limn→∞

n

√
1

2n+ 1
C2n+2
n+1 = limn→∞

n

√
(2n)!

n!n!
= limn→∞

n

√
(2n)2n

n2n
= 4,

the series is convergent, when γ < 1
4|A|ω(1+|β|) .

Remark. Since max(|L|
BMO

, |L⊥|
BMO

) ≤ |L+L⊥|
BMO
≤ |L|

BMO
+ |L⊥|

BMO

the convergence
∑

n≥0(L
(n) + L⊥(n)) implies convergence of

∑
n≥0 L

(n) and∑
n≥0 L

⊥(n) and vice versa.
The existence of the solution for arbitrary bounded η is proven [8]. We

can prove here little more general result

Proposition 1. There exists solution of (2) for sufficiently small γ and
arbitrary bounded η̄ .

Proof. Let m̄ + m̄⊥ be solution of (2) for η = γAT and sufficiently small
γ. From the result of [8] there exists a solution of

ET (m̃)EαT (m̃⊥) = c exp{η̄},

w.r.t
P̄ = ET (m̄+ m̄⊥)·, m̃+ m̃⊥ ∈M(F, P̄ ) +M⊥(F, P̄ ).P.

It is easy to verify that m+m⊥ = m̄+ m̄⊥ + m̃+ m̃⊥ is a solution of (2) for
η = η̄ + γAT .

The uniqueness of the solution was proved in [8].

Proposition 2. . Let η be an FT -measurable random variable. If there
exists a triple (c,m,m⊥), where c ∈ R+,m ∈ BMO∩M,m⊥ ∈ BMO∩M⊥

satisfying equation (2) then such solution is unique.

We now show that without finiteness of |A|ω either the solution does not
exists or the convergence of series is valid in a week sense.

Example 1. Let α = −1, γ = 2, η̄ = 0, At = 1
2

∫ t
0
(W 2

s +W 2⊥
s )ds, F =

(FW,W
⊥

t ), where W,W⊥ is 2-dimensional Brownian motion. Then (5) be-
comes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +
1

2

∫ T

0

(W 2
s +W 2⊥

s )ds.

7



We have

L
(0)
T + L

(0)⊥
T = c0 +

∫ T

0

(T − s)WsdWs +

∫ T

0

(T − s)W⊥
s dW

⊥
s ,

L
n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.

Let assume

L
(n)
T =

∫ T

0

(T − s)2n+1αnWtdWs,

L
(n)⊥
T =

∫ T

0

(T − s)2n+1βnW
⊥
t dW

⊥
s .

Then a0 = 1, β0 = 1 and

L
(n+1)
T = c′n +

n∑
k=0

∫ T

0

(T − s)2n+2αkαn−kW
2
s ds

L
(n+1)⊥
T = c′′n −

n∑
k=0

∫ T

0

(T − s)2n+2βkβn−kW
2
s ds, n ≥ 0.

Taking stochastic derivatives Dt, D
⊥
t and conditional expectations on both

sides we get

(T − s)2n+3αnWt = 2
n∑
k=0

αkαn−kWt

∫ T

t

(T − s)2n+2ds

=
2

2n+ 3
Wt(T − t)2n+3

n∑
k=0

αkαn−k,

(T − s)2n+3βnW
⊥
t = − 2

2n+ 3
W⊥
t (T − t)2n+3

n∑
k=0

βkβn−k,

which means that

αn+1 =
2

2n+ 3

n∑
k=0

αkαn−k, βn+1 = − 2

2n+ 3

n∑
k=0

βkβn−k, n ≥ 0.
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Introducing α(s) =
∑∞

n=0 αns
2n+1, β(s) =

∑∞
n=0 βns

2n+1 one obtains

α′(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 1 + 2
∞∑
n=0

n∑
k=0

(αkαn−k)s
2n+2 = 1 + 2a2(s),

β′(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1− 2
∞∑
n=0

n∑
k=0

βkβn−ks
2n+2 = 1− 2β2(s).

I.e.

α′(s) = 1 + 2a2(s), α(0) = 0, (11)

β′(s) = 1− 2β2(s), β(0) = 0.

Thus

α(s) =
1√
2

tan(
√

2s), β(s) = − 1√
2

tanh(
√

2s).

If T < π
2
√
2

series are convergent (not in BMO-space) and (c, L, L⊥) is defined

as c = 1
2

ln cos(
√

2T )cosh(
√

2T ) (by calculations in the appendix),

Lt =
1√
2

∫ t

0

tan(
√

2s)WsdWs, L
⊥
t = − 1√

2

∫ t

0

tanh(
√

2s)W⊥
s W

⊥
s .

When T > π
2
√
2

a local martingale L satisfying LT − 〈L〉T = 1
2

∫ T
0
W 2
t dt does

not exist (despite the fact that
∫ T
0
W 2
t dt is p-integrable for each p ≥ 1),

since from ET (2L) = e
∫ T
0 W 2

t dt follows that Ee
∫ T
0 W 2

t dt = EET (2L) ≤ 1, which

contradicts to Ee
∫ T
0 W 2

t dt =∞ (see appendix).
In the next example exact solution of (5) also exists, however it does not

belong to the extreme cases considered in [9],[10].
Example 2. Let α = −1, γ = 2, η̄ = 0, At =

∫ t
0
WsW

⊥
s ds, F =

(FW,W
⊥

t ), where W,W⊥ is a 2-dimensional Brownian motion. Then (5) be-
comes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +

∫ T

0

WsW
⊥
s ds.

9



We have

L
(0)
T = EL

(0)
T +

∫ T

0

(T − s)W⊥
s dWs, L

(0),⊥
T = EL

(0),⊥
T +

∫ T

0

(T − s)WsdW
⊥
s ,

L
(n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.

We assert that

L
(n)
T = EL

(n)
T +

∫ T

0

(T − s)2n+1(αnWt + βnW
⊥
s )dWs,

L
(n)⊥
T = EL

(n)⊥
T +

∫ T

0

(T − s)2n+1(βnWt − αnW⊥
s )dW⊥

s ,

where α0 = 0, β0 = 1 and

αn+1 =
2

2n+ 3

n∑
k=0

(αkαn−k − βkβn−k), βn+1 =
4

2n+ 3

n∑
k=0

αkβn−k, n ≥ 0.

Indeed,

L
(n+1)
T + L

(n+1)⊥
T = cn

+
n∑
k=0

∫ T

0

(T − s)2n+2(αkWs + βkW
⊥
s )(αn−kWs + βn−kW

⊥
s )ds

−
n∑
k=0

∫ T

0

(T − s)2n+2(βkWs − αkW⊥
s )(βn−kWs − αn−kW⊥

s )ds

=
n∑
k=0

∫ T

0

(T − s)2n+2[(αkαn−k − βkβn−k)W 2
s − (αkαn−k − βkβn−k)W⊥2

s

+2(αkβn−k + βkαn−k)WsW
⊥
s ]ds+ cn, n ≥ 0.
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Using representation of integrands by stochastic derivatives we get

(T − t)2n+3(αn+1Wt + βn+1W
⊥
t )

= E[Dt(
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ]

∫ T

t

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ],

(T − t)2n+3(βn+1Wt − αn+1W
⊥
t )

= E[D⊥t (
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt]

∫ T

t

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt].

Equalising coefficients at W,W⊥ we obtain the desired formula. One can
be checked that limn→∞

n
√
|an| = 0, limn→∞

n
√
|bn| = 0. Introducing α(s) =∑∞

n=0 αns
2n+1, β(s) =

∑∞
n=0 βns

2n+1 one obtains

Lt = L0 +

∫ t

0

(α(T − s)Ws + β(T − s)W⊥
s )dWs,

L⊥t = L⊥0 +

∫ t

0

(β(T − s)Ws − α(T − s)W⊥
s )dW⊥

s .

On the other hand we can derive ODE for the pair (α, β)

α′(s) = 2α2(s)− 2β2(s), α(0) = 0, (12)

β′(s) = 1 + 4α(s)β(s), β(0) = 0.

11



Indeed

α′(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 2
∞∑
n=0

n∑
k=0

(αkαn−k − βkβn−k)s2n+2 = 2a2(s)− 2β2(s),

β′(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1 + 4
∞∑
n=0

n∑
k=0

αkβn−ks
2n+2 = 1 + 4α(s)β(s).

The equation (12) is easy to solve, if we pass to the equation for complex-
variable function ζ(s) = α(s) + iβ(s)

ζ ′(s) = i+ 2ζ2(s), ζ(0) = 0.

It is obvious that ζ(s) = 1
1−i tan((1 + i)s) is a solution. We have

ζ(s) =
1

2
(1 + i)

sin((1 + i)s) cos((1− i)s)
| cos((1 + i)s)|2

=
1

4
(1 + i)

sin(2s) + i sinh(2s)

| cos((1 + i)s)|2

=
1

4

sin(2s)− sinh(2s) + i(sin(2s) + sinh(2s))

cos2(s) cosh2(s) + sin2(s) sinh2(s)
.

Finally we can write explicit solution

α(s) =
1

4

sin(2s)− sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)
,

β(s) =
1

4

sin(2s) + sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)

of (12) and conclude that it exists on whole [0,∞), since the denominator
does not vanish.

A Appendix

The formula Ee−T
2
∫ 1
0 W

2
t dt = 1√

cosh(
√
2T )

is derived in [7]. Similarly we can

prove
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Proposition 3.

Ee
∫ T
0 W 2

t dt =


1√

cos(
√
2T )
, if T < π

2
√
2

∞, if T ≥ π
2
√
2

.

Proof. Let en(t) be orhonormal basis in L2[0, 1]. Then Ee
∫ T
0 W 2

t dt =

EeT
2
∫ 1
0 W

2
t dt = EeT

2
∑∞
n=1(

∫ 1
0 en(t)Wtdt)2 = E

∏∞
n=1 e

T 2(
∫ 1
0 en(t)Wtdt)2 . Since

E(

∫ 1

0

en(t)Wtdt)(

∫ 1

0

em(t)Wtdt) =

∫ T

0

en(t)

∫ T

0

(t ∧ s)em(s)dsdt

it is convenient to use the orthonormal basis of eigenvectors of the opera-
tor

∫ T
0

(t ∧ s)f(s)ds in L2[0, 1]. From λf(t) =
∫ T
0

(t ∧ s)f(s)ds follows that
λf ′′(t) = −f(t), f(0) = 0, f ′(1) = 0. The function sinµπt satisfies these
conditions iff µ2 = 1/λ, cosµπ = 0 and µ = −1/2 + n. Thus

λn =
1

(n− 1/2)2π2
, en(t) =

√
2 sin((n− 1/2)πt), n ≥ 1

and E(
∫ 1

0
en(t)Wtdt)(

∫ 1

0
em(t)Wtdt) = λn

∫ 1

0
en(t)em(t)dt = 0, n 6= m. Since

random variables (
∫ 1

0
en(t)Wtdt) are orthogonal and normal they are also

independent. Hence taking into account infinite product decomposition of
cos(
√

2t) one gets

Ee
∫ T
0 W 2

t dt =
∞∏
n=1

EeT
2(
∫ 1
0 en(t)Wtdt)2

=
∞∏
n=1

EeT
2λnW 2

1 =
∞∏
n=1

1√
1− 2T 2

(n−1/2)2π2

=

√√√√ ∞∏
n=1

1

1− 8T 2

(2n−1)2π2

=
1√

cos(
√

2T )
,

if
√

2T < π/2.
It easy to see that

E exp

(∫ π
2
√
2

0

W 2
t dt

)
= lim

T↑ π
2
√
2

E exp

(∫ T

0

W 2
t dt

)
= lim

T↑ π
2
√
2

1√
cos(
√

2T )
=∞.

13



If T > π
2
√
2

then Ee
∫ T
0 W 2

t dt > Ee
∫ π

2
√
2

0 W 2
t dt =∞.

Lemma 3. Let (an)n≥0 be a solution of the system

a0 = 1, an+1 =
n∑
k=0

akan−k. (13)

Then an = 1
4n+2

(
2n+2
n+1

)
.

Proof. For the series u(λ) =
∑∞

n=0 anλ
n from (13) we get equation u(λ) =

1 + λu2(λ), with the roots u(λ) = 1
2λ

(1 ±
√

1− 4λ). The equality u(λ) =
1
2λ

(1 +
√

1− 4λ) is impossible, since decomposition of the right hand side is

starting from the term 1
λ
. Therefore, equality an = 1

4n+2

(
2n+2
n+1

)
follows from

the Taylor expansion of 1−
√

1− 4λ, since

u(λ) =
1

2λ
(1−

√
1− 4λ)

= −1

2

∑
n≥1

1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
(−4)nλn−1

=
1

2

∑
n≥1

(2− 1) · · · (2n− 2− 1)

2nn!
4nλn−1

=
1

2

∑
n≥1

(2n− 3)!!

n!
2nλn−1 =

1

2

∑
n≥1

1

2n− 1

(
2n

n

)
λn−1.

Lemma 4. There exist sequences (mi, i ≥ 1) ∈ M, (m⊥i , i ≥ 1) ∈ M⊥,

such that eη = c1
ET (m1)

ET (m⊥
1 )
E2T (m⊥1 ) and

eη = cn
ET (
∑n

i mi)

ET (
∑n

i m
⊥
i )
E2T (m

′⊥
n ), n ≥ 2, (14)

where m
′⊥
n = m⊥n − 〈m⊥n ,

∑n−1
i m⊥i 〉.

Proof. The theorem will be proved by induction. Assume (14) is valid
for n. There exist such martingales mn+1,m

⊥
n+1 that c′ET (m′n+1 + m′⊥n+1) =

E2T (m
′⊥
n ) and

m′n+1 = mn+1 − 〈mn+1,

n∑
i

,mi〉, m′⊥n+1 = m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉

14



are martingales w.r.t. E(
∑n

i mi +m⊥i ) · P. Thus

eη = cnc
′ ET (

∑n
i mi)

ET (
∑n

i m
⊥
i )
E(mn+1 − 〈mn+1,

n∑
i

mi〉+m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉)

= cn+1
ET (
∑n

i mi)ET (mn+1 − 〈mn+1,
∑n

i mi〉)
ET (
∑n

i m
⊥
i )ET (m⊥n+1 − 〈m⊥n+1,

∑n
i m

⊥
i 〉)
E2T (m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉)

= cn+1
ET (
∑n+1

i mi)

ET (
∑n+1

i m⊥i )
E2T (m

′⊥
n+1).

Remark. If we will prove the convergence of series
∑

imi,
∑

im
⊥
i , then

m⊥n → 0,m
′⊥
n → 0, E(m

′⊥
n )→ 1 and eη = c

ET (
∑∞
i mi)

ET (
∑∞
i m⊥

i )
.
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Number of Unordered Samples of Integers
With a Given Sum

Tsotne Kutalia
Cybernetics Institute of Georgian Technical University.

Abstract
There is an analytic formula counting the number of ordered
samples of N non-negative integers making up a given sum.
In this paper we study the number of unordered samples
of N non-negative integers with a given sum. We produce
a closed form solution for N = 3 non-negative integers.

Keywords: Combinatorics, Number Theory, Graph Theory

1 Introduction
A typical approach to finding the total number of ordered samples (a1+...+aN )
of N non-negative integers making up a sum of n(n ≥ N, a1 + ...aN = n) is
to take n ones 1 + 1 + ... + 1 (n times) and put N − 1 separator bars in the
sequence. The total umber of arrangements of bars and ones can be viewed as
the total number of ordered arrangements of N − 1 zeros and n ones which
obviously is Cn

n+N−1. See [1].
However, the same problem gets complicated for unordered samples. There is
a known recursion in ([2]) which is defined as

fN (n) = fN−1(n) + fN (n−N) (1)

1



2 Tsotne Kutalia

In the text that follows, we obtain a precise formula for N = 3 and n ≥ N to
be

f3(n) = I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
+

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
+

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0)}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
(2)

which reduces to

f3(n) =
(n+ 3− {n}3)(n+ 6− {n}3)

18
+

(n+ 2({n}3)2)− (3{n}3)2

36
(3)

where {n}k denotes a modulo operator giving a remainder for division of n
over k.

2 Graphical Representation of Partitions, N=3
Let us denote by fN (n) the function counting the number of unordered samples
of N non-negative integers [a1, ..., aN ] such that a1 + ... + aN = n. Let by
convention f0(n) = 1 for all n. Obviously f1(n) = 1 for all n as well. It
can easily be checked that for even n, f2(n) = n+2

2 and for odd n we have
f2(n) =

n+1
2 . We can thus define f2(n) with the indicator functions as

f2(n) = I{n mod 2=0}
n+ 2

2
+ I{n mod 2=1}

n+ 1

2
(4)

For N = 3, we take the sum of N ones and partition the sum of series with
2 separator bars. This can best be illustrated through an example. For n = 3
we have the following arrangements of 2 separator bars

|| 1 + 1 + 1, | 1 | +1 + 1, 1 | +1 | +1 (5)

The first arrangement in (5) corresponds to a1 = 0, a2 = 0, a3 = 3. The
second arrangement corresponds to a1 = 0, a2 = 1, a3 = 2 and the last one to
a1 = 1, a2 = 1, a3 = 1. So we have the followig sample {003, 012, 111}. Note
that the numbers in each sample are listed in a non-decreasing order. That is
why the arrangement like | 1+1 | +1 are ignored since that would correspond
to the sample element 021 in which the numbers are not put in non-decreasing
order and thus such an element already extists as 012.
We can enumerate the positions of separator bars in the series of ones as follows
112+13+14 where the superscripts mark the positions of possible placements
of the separator bars. Then the sample {003, 012, 111} can be transformed
into the following sample {11, 12, 23}. In this sample, the first element 11
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stands for the two bars placed at the position 1 and thus it corresponds to the
first partition in (5). The element 12 corresponds to the second partition and
respectively 23 is for the third partition.
We view the sample elements as the coordinates of points on the cartesian
coordinate system and for convenience we reverse the numbers. So {11, 12, 23}
becomes {11, 21, 32}. The points on the coordinate system corresponding to
this sample is

Fig. 1: f3(3) = 3

Likewise, for n = 4 we have the following partitions identical to (5) (the
corresponding samples and the reverse versions of them are given below each
partition)

|| 1+ 1+1+1, | 1 | +1+1+1, 1 | +1 | +1+1, 1 | +1 | +1+1 (6)

Partition: || 1 + 1 + 1 + 1 | 1 | +1 + 1 + 1 1 | +1 | +1 + 1 1 | +1 | +1 + 1
Sample: 004 013 022 112
Coordinate: 11 12 13 23
Reversed: 11 21 31 32

and the corresponding plot for f3(4) = 4 is on Fig.2 below.
The appendix at the end of the paper contains some of the partitions

and the respective graphs. We take some of the examples here to develop the
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Fig. 2: f3(4) = 4

Fig. 3: f3(15) = 27 Fig. 4: f3(16) = 30 Fig. 5: f3(17) = 33

Fig. 6: f3(18) = 37 Fig. 7: f3(19) = 40 Fig. 8: f3(20) = 44

formula (2). The examples for N = 3 are n = 15, n = 16, n = 17, n = 18, n =
19, n = 20.
Let us begin with n = 15, n = 16 and n = 17 on the one hand and n = 18, n =
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19, n = 20 on another. The respective graphs are given in Fig. 3 to Fig. 8.
There are some interesting patters emerging. In particular, we have 3 possible
configurations listed below
Configuration 1, n mod 3 = 0 : Fig.3 displays the case when n = 15 which is
divisible by 3. On that graph there is an extreme point placed at the coordinate
(11, 6). This point is unique in the sense that it does not share either x or y
coordinate with any other point. In general, there is a point located at the
coordinate (x0, y0) while there is no any other point having either x0 as x
coordinate or y0 as y coordinate. The value of y0 coordinate can be found by

y0 = 1 +
n

3
(7)

Configuration 2, n mod 3 = 1: Fig. 4 displays the case when n = 16. The points
put in squares indicate the additions to the previous graph. So as we move
from Fig. 3 to Fig. 4 we have new points added on the coordinates (11, 5),
(10, 3) and (9, 1). In general, we have the points added on the coordinates
(x0, y0 − 1), (x0 − 1, y0 − 3) and so on till the last y coordinate reaches 1. i.e.
y = 1. The value of y0 coordinate now is

y0 = 1 +
n− 1

3
(8)

Configuration 3, n mod 3 = 2: Fig. 5 displays the case when n = 17. Again,
the points in the squares indicate the additions from the previous case. In
particular when moving from Fig. 4 to Fig. 5 we have the new points added
on the coordinates (12, 6), (11, 4) and (10, 2). In general, the points are added
on (x0 + 1, y0), (x0, y0 − 2) and so on till the last point’s y coodinate reaches
2. The value of y0 for this configuration is

y0 = 1 +
n− 2

3
(9)

In total we only have these 3 configurations and the cycle goes over and over
again. For example, when n = 18, the configuration is similar to the case when
n = 15. In general, all n mod 3 = 0 configurations are similar with a slight
difference. When n is odd, the last added point occurs at the coordinate y = 2
while for even n, the additions continue till y = 1. Similar differences hold for
cases n mod 3 = 1 and n mod 3 = 2. In particular, for odd n − 1, we keep
adding points as described in Configuration 2 till the last point’s y coordinate
is y = 1 while for even n− 1, the last point added occurs at the y coordinate
of y = 2. Similarly for odd n− 2 we have the last added point’s y coordinate
to be y = 2 and for even n− 2 we have the same coordinate to be y = 1.
f3(n) is simply the number of points on a corresponding plot. In order to count
them we take the diagonal approach. Let us observe the counting method for
all 3 configurations for the above mentioned examples.
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Configuration 1: We can split the total number of points on Fig. 3 into two
parts. The upper part of (and including) the main diagonal and the lower part.

Fig. 9: f3(15) = 27 Fig. 10: f3(16) = 30 Fig. 11: f3(17) = 33

Fig. 12: f3(18) = 37 Fig. 13: f3(19) = 40 Fig. 14: f3(20) = 44

We refer to the formula of the sum n terms of arithmetic series which in its
more convenient form can according to [REFERENCE HERE] be written as

Sn =
n

2
(a1 + an) (10)

where a1 and an are respectively the first and the last terms of the series.
In configuration 1, the upper part of (and including) the longest diagonal is
summed as 1 + 2 + ... + (1 + n

3 ) where the last term comes from (7). By
(10) this sum is (n+3)(n+6)

18 . As for the lower part of the diagonal, we have 2
variations. In particular, when n is odd (the case shown on Fig. 9) the sum
of the arithmetic series with the common difference of 2 consisting of the
following terms 1 + 3 + 5 + ... + (n3 − 1) which by (10) is n2

36 . On the other
hand, if n is even (the case shown on Fig. 12), the sum of the arithmetic series
is 2+ 4+ 6+ ...+ (n3 − 1) which by (10) is (n−3)(n+3)

36 . Combining these terms
yields the number of unordered samples of 3 non - negative integers with a
sum n when n mod 3 = 0 which is

I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
. (11)

Similarly, for configuration 2, the upper part of (and including) the longest
diagonal is summed as 1+2+ ...+(1+ n−1

3 ) which by (10) is (n+2)(n+5)
18 . The

lower parts differ according to whether n − 1 is odd or even. For odd n − 1
(the case shown on Fig. 10) the sum of the arithmetic series is 2 + 4 + 6 +
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...+ n−1
3 which by (10) is (n−1)(n+5)

18 . For n− 1 being even, the series becomes
1 + 3 + 5 + ... + n−1

3 which by (10) is (n+2)2

36 . Combininig these terms yields
the number of unordered samples of 3 non - negative integers with a sum n
when n mod 3 = 1 which is

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
.

(12)
Finally, for configuration 3, the upper part of (and including) the lonest diag-
onal is summed as 1+ 2+ 3+ ...+ (1+ n−3

3 ) which by (10) is (n+1)(n+4)
38 . The

lower parts similarly to the previous configurations is differ according to n−2
being odd or even. For odd n− 2, the sum is 2+4+ ...+ n−1

3 which by (10) is
(n+4)2

36 and for odd n− 2 the sum 1+ 3+ ...+ (1+ n−3
3 ) by (10) is (n+1)(n+7)

36 .
Combininig these terms yields the number of unordered samples of 3 non -
negative integers with a sum n when n mod 3 = 2 which is

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
(13)

In total, f3(n) turns out to be the sum of (11), (12) and (13) which is (2)
restated below

f3(n) = I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
+

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
+

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0)}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
It is easily verified that the formula above can be reduced to (3) component
by component. This is also restated below

f3(n) =
(n+ 3− {n}3)(n+ 6− {n}3)

18
+

(n+ 2({n}3)2)− (3{n}3)2

36

At this point it remains to prove the formula. This is done by induction (1)
part by part.
To prove that the configuration 1 part of the formula holds for any n ≥ 3, we
assume that it holds for some n ≥ 3 and show that it also holds for n+ 3. In
fact, it can easily be shown that if we put n+3 in place of n in (7), we obtain
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the following sum in place of (11)

I{{n+3}3=0}(1 + 2 + 3 + ...+ (1 +
n+ 3

3
)+

I{{n+3}2=0}(1 + 3 + 5 + ...+ (
n+ 3

3
− 1))+

I{{n+3}2 6=0}(2 + 4 + 6 + ...+ (
n+ 3

3
− 1))).

(14)

Applying (10) to each component yields

I{{n+3}3=0}

[
6 + n

6

9 + n

3
+ I{{n+3}2=0}

(n+ 3)2

36
+ I{{n+3}2 6=0}

n(n+ 6)

36

]
.

(15)
Similarly, for configuration 2 part of the formula, we get

I{{n+3}3=1}(1 + 2 + 3 + ...+ (1 +
n+ 2

3
)+

I{{n+3}2=0}(2 + 4 + 6 + ...+
n+ 2

3
)+

I{{n+3}2 6=0}(1 + 3 + 5 + ...+
n+ 2

3
)).

(16)

This by applying (10) becomes

I{{n+3}3=1}

[
5 + n

6

9 + n

3
+ I{{n+3}2=0}

n+ 2

12

8 + n

3
+ I{{n+3}2 6=0}

(n+ 5)2)

36

]
.

(17)
Lastly, for configuration 3 part of the formula, we have

I{{n+3}3=2}(1 + 2 + 3 + ...+ (1 +
n+ 1

3
)+

I{{n+3}2=0}(1 + 3 + 5 + ...+ (1 +
n+ 1

3
))+

I{{n+3}2 6=0}(2 + 4 + 6 + ...+ (1 +
n+ 1

3
))).

(18)

This by applying (10) becomes

I{{n+3}3=1}

[
4 + n

6

7 + n

3
+ I{{n+3}2=0}

(n+ 7)2)

36
+ I{{n+3}2 6=0}

4 + n

12

10 + n

3

]
.

(19)
Combining (15), (17) and (19) yields f3(n+ 3) defined by (2).

On the other hand, by taking arbitrary non - negative integers, the
correctness of (2) and (3) can be easily verified by (1).
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3 General Recursive Formula for Arbitrary N
and n >= N

In terms of modulus operators, (1) can be redefined for different N -s. For
N = 4, we have

f4(n) = I{{n}4=0}

n
4 +1∑
k=1

f4k−4(3) + I{{n}4=1}

n−1
4 +1∑
k=1

f4k−3(3)+

I{{n}4=2}

n−2
4 +1∑
k=1

f4k−2(3) + I{{n}4=3}

n−3
4 +1∑
k=1

f4k−1(3)

(20)

For N = 5, we have

f5(n) = I{{n}5=0}

n
5 +1∑
k=1

f5k−5(4) + I{{n}5=1}

n−1
5 +1∑
k=1

f5k−4(4)+

I{{n}5=2}

n−2
5 +1∑
k=1

f5k−3(4) + I{{n}5=3}

n−3
5 +1∑
k=1

f5k−2(4)+

I{{n}5=4}

n−4
5 +1∑
k=1

f5k−1(4)

(21)

For N = 6, we have

f6(n) = I{{n}6=0}

n
6 +1∑
k=1

f6k−6(5) + I{{n}6=1}

n−1
6 +1∑
k=1

f6k−5(5)+

I{{n}6=2}

n−2
6 +1∑
k=1

f6k−4(5) + I{{n}6=3}

n−3
6 +1∑
k=1

f6k−3(5)+

I{{n}6=4}

n−4
6 +1∑
k=1

f6k−2(5) + I{{n}6=5}

n−5
6 +1∑
k=1

f6k−1(5)

(22)
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In general, for an arbitrary N , we have (1)

fN (n) = I{{n}N=0}

n
N +1∑
k=1

fNk−N (N − 1) + I{{n}N=1}

n−1
N +1∑
k=1

fNk−N+1(N − 1) + ...+

I{{n}N=N−1}

n−N+1
N +1∑
k=1

fNk−1(N − 1) =

N−1∑
j=1

I{{n}N=j}

n−j
N +1∑
k=1

fNk−N+j(N − 1)

(23)
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Appendix A Scatter Configurations for N = 3
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Fig. A1: f3(3) = 3 Fig. A2: f3(4) = 4 Fig. A3: f3(5) = 5
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A key part in robust estimation theory play the Huber M -estimators. In
general, M -estimators may be viewed as follows.

Consider a sequence of filtered statistical models

E =
{
(Ωn,Fn, F n = (Fn

t ), 0 ≤ t ≤ T, (Qn
θ , θ ∈ Θ ⊂ R1))

}
n≥1

, (1)

where for each n ≥ 1 and θ ̸= θ′, the probability measures Qn
θ and Qn

θ′ are
equivalent, Qn

θ ∼ Qn
θ′ , Fn = Fn

T and T > 0 is a number, σ-algebra Fn is
completed and filtration F n satisfies the usual conditions w.r.t. Qn

θ for some,
and hence, for each θ.
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Let for each θ ∈ Θ and n ≥ 1 the process (Ln(θ, t), 0 ≤ t ≤ T ) be a local
(square integrable) Qn

θ -martingale.
Denote Ln(θ) = Ln(θ, t)|t=T and consider stochastic equation (with re-

spect to parameter θ)

Ln(θ) = Ln(θ, ω) = 0, n ≥ 1. (2)

A sequence {Tn(ω), ω ∈ Ωn}n≥1 of Fn-measurable roots of these equa-
tions

(
i.e., for each n ≥ 1, Tn(ω) is a random variable defined on (Ωn,Fn)

with values Θ, and such that

Ln(Tn(ω), ω) = 0
)

(3)

is called a generalized M -estimator.
Notice that the equality (3) may be satisfied only asymptotically (in some

sense, see, e.g., Theorem 1 below).
The proof of assertions concerning the asymptotic behaviour of M -esti-

mators as solutions of equation (2) is carried out in two steps: firstly, the
asymptotic properties are established for the left-hand side of equation (2);
secondly, the asymptotic properties of the estimators (considered as implicit
functions) are obtained by linearization. In this way one may construct con-
sistent, linear, asymptotically normal estimators, which are asymptotically
equivalent of M -estimators (see, e.g., (15) below). Class of such estimators
is a basic class of estimators in robust estimation theory (see, e.g., [1, 2, 3]).

1 Local limiting behaviour of roots

Given a sequence of statistical models (1), and let {cn(θ)}n≥1, cn(θ) > 0,
θ ∈ Θ be a normalizing deterministic sequence.

Consider the sequence of random variables {Ln(θ)}n≥1 = {Ln(θ, ω), ω ∈
Ωn}n≥1 depending on the parameter θ ∈ Θ.

Remark 1. We shall use the following abbreviation

Qn
θ - lim

n→∞
ξn = K,

where ξ = {ξn}n≥1 is a sequence of random variables defined for each n on
Ωn and K is a real number, if ∀ρ > 0,

lim
n→∞

Qn
θ{ω ∈ Ωn : |ξn(ω)−K| > ρ} = 0.

2



Theorem 1. Let the following conditions hold:

a) for each θ ∈ Θ, lim
n→∞

cn(θ) = 0;

b) for each n ≥ 1, the mapping θ ⇝ Ln(θ) is continuously differentiable
in θ Qn

θ -a.s., (L̇n(θ) :=
∂
∂θ

Ln(θ));

c) for each θ ∈ Θ, there exists a function ∆Q(θ, y), θ, y ∈ Θ, such that

Qn
θ - lim

n→∞
c2n(θ)Ln(y) = ∆Q(θ, y) (4)

and the equation
∆Q(θ, y) = 0

with respect to the variable y has the unique solution θ∗ = bQ(θ);

d) Qn
θ - lim

n→∞
c2n(θ)L̇n(θ

∗) = −γQ(θ), where γQ(θ) is a positive number for

each θ ∈ Θ;

e) lim
r→0

lim sup
n→∞

Qn
θ{sup{y:|y−θ∗|≤r} c

2
n(θ)|L̇n(y) − L̇n(θ

∗)| > ρ} = 0 for each

ρ > 0.

Then for each θ ∈ Θ there exists a sequence of random variables T = {Tn}n≥1

taking the values in Θ such that

I. lim
n→∞

Qn
θ{Ln(Tn) = 0} = 1;

II. Qn
θ - lim

n→∞
Tn = θ∗;

III. if {T̃n}n≥1 is another sequence with properties I and II, then

lim
n→∞

Qn
θ{Tn = T̃n} = 1.

If, in addition,

f) the sequence of distributions {L{cn(θ)Ln(θ
∗) | Qn

θ}}n≥1 weakly con-
verges to a certain distribution Φ,

then

IV. (i) L{γQ(θ)c−1
n (θ)(Tn − θ∗) | Qn

θ}
w−→ Φ,

3



(ii) c−1
n (θ)(Tn − θ∗) =

c−1
n (θ)Ln(θ

∗)

γQ(θ)
+Rn(θ), Rn(θ)

Qn
θ−→ 0.

Proof. 1. By the Taylor formula we have

Ln(y) = Ln(θ
∗) + L̇n(θ

∗)(y − θ∗) + [L̇n(θ̄)− L̇n(θ
∗)](y − θ∗),

where θ̄ = θ∗ +α(θ∗)(y− θ∗), α(θ∗) ∈ [0, 1] and the point θ̄ is chosen so that
θ̄ ∈ Fn (ξ ∈ F means that r.v. ξ is F -measurable).

From this we get

c2n(θ)Ln(y) = c2n(θ)Ln(θ
∗)− γQ(θ)(y − θ∗) + εn(θ̄, θ

∗)(y − θ∗), (5)

where εn(y, θ
∗) ∈ Fn,

εn(y, θ
∗) = c2n(θ)[L̇n(y)− L̇n(θ

∗)] + [c2n(θ)L̇n(θ
∗) + γQ(θ)], y ∈ Θ.

Evidently, conditions d) and e) ensure that

lim
r→0

lim sup
n→∞

Qn
θ

{
sup

{y:|y−θ∗|≤r}
|εn(y, θ∗)| > ρ

}
= 0 (6)

for each ρ > 0.
2. We now show that there exists a family {Ωθ(n, r) : n ≥ 1, r > 0, θ ∈

Θ} with properties

1) Ωθ(n, r) ∈ Fn,

2) lim
r→0

lim sup
n→∞

Qn
θ{Ωθ(n, r)} = 1,

and for any r > 0, n ≥ 1 and ω ∈ Ωθ(n, r) the equation

Ln(y) = 0

has the unique solution Tn in the segment |y − θ∗| ≤ r.
Expansion (5) yields

c2n(θ)Ln(θ
∗ + u)u = c2n(θ)Ln(θ

∗)u− u2γQ(θ) + u2εn(θ̄, θ
∗). (7)

For any θ ∈ Θ, n ≥ 1 and r > 0 define

Ωθ(n, r) =

{
ω ∈ Ωn : |c2n(θ)Ln(θ

∗)| ≤ γQ(θ)r

2
,

sup
{y:|y−θ∗|≤r}

|εn(y, θ∗)| <
γQ(θ)

2

}
.
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Obviously, Ωθ(n, r) ∈ Fn. Hence, if ω ∈ Ωθ(r, n), then from equality (7)
we get Ln(θ

∗ + u)u < 0 for |u| = r.
Since the mapping u ⇝ Ln(θ

∗ + u) is continuous with respect to u, the
equation Ln(θ

∗ + u) = 0 for |u| ≤ r has at least one solution un(θ
∗) with

|un(θ
∗)| ≤ r.

It can be easily seen that if ω ∈ Ωθ(n, r) and |u| ≤ r, then L̇n(θ
∗+u) < 0.

On the other hand, for ω ∈ Ωθ(n, r) and |u| ≤ r,

Ln(θ
∗ + u, ω)− Ln(θ

∗ + un(θ), ω)

=

∫ 1

0

∂

∂α
[Ln((θ

∗ + un(θ
∗)) + α(u− un(θ

∗)), ω)] dα.

Consequently,

Ln(θ
∗ + u, ω) =

∫ 1

0

L̇(θ∗ + un(θ
∗) + α(u− un(θ

∗)), ω)(u− un(θ
∗)) dα

and

Ln(θ
∗ + u, ω)(u− un(θ

∗))

=

∫ 1

0

L̇(θ∗ + un(θ
∗) + α(u− un(θ

∗)), ω)(u− un(θ
∗))2 dα < 0,

provided u ̸= un(θ
∗). Hence Ln(θ

∗ + u, ω) ̸= 0 for |u| ≤ r, u ̸= un(θ
∗). By

the construction of the set Ωθ(n, r) and due to conditions c), d) and e) it is
easily seen that 2) is true as well.

3. Now we construct the sequence T = {Tn}n≥1 with properties I, II and
III. Define

Ωθ
n :=

⋃
k>0

Ωθ(n, k
−1).

Evidently, Ωθ
n ∈ Fn. Let ω ∈ Ωθ

n. Then from the previous statement it
follows that there exists a number k(ω) > 0 such that the equation Ln(y) = 0

has the unique solution T̃n(ω) in the segment |y − θ∗| ≤ (k(ω))−1 with the

mapping ω ⇝ T̃n(ω) which is Ωθ
n ∩ Fn-measurable.

Put

Tn(ω) =

{
T̃n(ω) if ω ∈ Ωθ

n,

θ0 if ω ̸= Ωθ
n,

where θ0 is a point in Θ.
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It is easily seen that, by construction, Tn possesses properties I, II and
III.

4. Finally, we prove assertion IV. By expansion (5), we have

|cn(θ)Ln(Tn)− cn(θ)Ln(θ
∗)− γQ(θ)c

−1
n (θ)(Tn − θ∗)|

≤ |εn(T̄ , θ∗)γ−1
Q (θ)| |γQ(θ)c−1

n (θ)(Tn − θ∗)| (8)

and lim sup
n→∞

Qn
θ{|εn(T̄n, θ

∗)| ≥ ρ} = 0, ∀ρ > 0, which follows directly from

the relation

{|T̄n − θ∗| ≤ r} ∩
{

sup
{y:|y−θ∗|≤r}

|εn(y, θ∗)| < ρ
}
⊂ {|εn(T̄n, θ

∗)| < ρ}.

Denote Xn := cn(θ)(Ln(Tn) − Ln(θ
∗)), Yn := γQ(θ)c

−1
n (θ)(Tn − θ∗) and

Zn := |εn(T̄n, θ
∗)γ−1

Q |. Then inequality (8) takes the form

|Xn − Yn| ≤ Zn|Yn|.

It is well-known that if Xn converges weakly to X (Xn
w−→ X) and

Zn
P−→ 0, then Yn

w−→ X. Thus we get

lim
n→∞

L{γQ(θ)c−1
n (θ)(Tn − θ∗) | Qn

θ} = lim
n→∞

L{cn(θ)Ln(θ
∗) | Qn

θ}.

Assertion (i) is proved. The proof of assertion (ii) easily follows from (i) and
inequality (8).

2 Global limiting behaviour of roots

We use the objects introduced in the previous section.
Assume Θ = [a, b]. Furthermore, for convenience, put a = −∞ and

b = +∞.
For every θ we consider the set

Sθ =
{
T̂ = {T̂n}n≥1 : for each n ≥ 1, T̂n ∈ Fn and

Qn
θ - lim

n→∞
c2n(θ)Ln(T̂n) = 0

}
.

Theorem 2. Let the following conditions (sup c) hold:
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(sup c)1 the function ∆Q(θ, y) is y-continuous for every θ;

(sup c)2 for any K, 0 < K < ∞, and ρ > 0,

lim
n→∞

Qn
θ

{
sup
|y|≤K

|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ
}
= 0.

Then

I. The following alternative holds: if T̂ ∈ Sθ, then either

Qn
θ - lim

n→∞
T̂n = θ∗ = bQ(θ), (9)

or
lim
n→∞

Qn
θ{|T̂n| > K} > 0 (10)

for any K, 0 < K < ∞.

II. If, in addition, the condition

(c+) lim
|y|→∞

|∆Q(θ, y)| = K(θ) > 0

holds and

lim
n→∞

Qn
θ

{
sup

−∞<y<+∞
|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ

}
= 0

for any ρ > 0, then (9) is valid.

Proof. Let T̂ = {T̂n}n≥1 ∈ Sθ and suppose that inequality (10) is not satis-
fied. Then there is a number K0 > 0 such that

lim
n→∞

Qn
θ{|T̂n| > K0} = 0.

Therefore,

Qn
θ

{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ

}
≤ Qn

θ

{
|T̂ |n > K0

}
+Qn

θ

{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ, |T̂n| ≤ K0

}
≤ Qn

θ

{
|T̂ |n > K0

}
+Qn

θ

{
sup

|y|≤K0

|c2n(θ)Ln(y)−∆(θ, y)| > ρ
}
→ 0 as n → ∞.
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On the other hand,

Qn
θ - lim

n→∞
c2n(θ)Ln(T̂n) = 0

and hence,
Qn

θ - lim
n→∞

∆Q(θ, T̂n) = 0. (11)

Assume now that equality (9) fails too. Then one can choose ε > 0 such
that

lim
n→∞

Qn
θ

{
|T̂n − bQ(θ)| > ε

}
> 0.

By the condition (sup c)1,

∆(ε) = inf
{y:|y−bQ(θ)|>ε, |y|≤K0}

|∆Q(θ, y)| > 0,

whence

lim
n→∞

Qn
θ

{
|∆Q(θ, T̂n)| > ∆(ε)

}
≥ lim

n→∞
Qn

θ

{
|∆Q(θ, T̂n)| > ∆(ε), |T̂n| ≤ K0

}
≥ lim

n→∞
Qn

θ

{
|T̂n − bQ(θ)| > ε, |T̂n| ≤ K0

}
> 0,

which contradicts equality (11).
In order to prove the second assertion of theorem, it is sufficient to note

that under the condition (c+)

inf
{y:|y−bQ(θ)|≥ε}

|∆Q(θ, y) > 0

and to repeat the previous arguments.

Suppose that the conditions of Theorem 1 are satisfied.
For every n ≥ 1, consider the set

An = {ω ∈ Ωn : the equation Ln(y, ω) = 0 has at least one solution}.

Note that An ∈ Fn. Indeed, recall that the σ-algebra Fn is complete,
Ln(y, ·) ∈ Fn for each fixed y and Ln(·, ω) is a.s. continuous. Hence, the
mapping (y, ω) ⇝ Ln(y, ω) is measurable and Bn := {(y, ω) : Ln(y, ω) =
0} ∈ B(R1)×Fn. But An = ΠΩn(Bn), where ΠΩn(·) is a projection operator.
Thus An ∈ Fn.

8



Evidently, for any θ, we have Ωθ
n ⊂ An, where the set Ωθ

n is defined in
item 3 of the proof of Theorem 1.

Since under the conditions of Theorem 1, Qn
θ{Ωθ

n} → 1, for any θ we have

lim
n→∞

Qn
θ{An} = 1.

For each n ≥ 1, introduce the sets:

Sn = {T̃n : T̃n is Fn-measurable; Ln(T̃n) = 0 if ω ∈ An; T̃n = θ0 if ω /∈ An},

where θ0 is a real number.
Now, put the set of estimators

Ssol = {T̃ =
{
T̃n}n≥1 : ∀n ≥ 1, T̃n ∈ Sn

}
.

Corollary 1. If along with the conditions of Theorem 1 the conditions (sup c)
are satisfied for any θ, then there exists an estimator T ∗ = {T ∗

n}n≥1 ∈ Ssol

such that
Qn

θ - lim
n→∞

T ∗
n = bQ(θ) (12)

for any θ.
If, moreover, for any θ the condition (c+) is satisfied, then any estimator

T̃ ∈ Ssol has property (12).

Proof. It is sufficient to construct an estimator T ∗ = {T ∗
n}n≥1 for which (10)

fails for each θ.
For any n ≥ 1 and ε > 0, there exists T ∗

n ∈ Sn such that

|T ∗
n | ≤ ess inf

T̃n∈Sn

|T̃n|+ ε.

By virtue of Theorem 1, for any θ there exists a sequence T̂ (θ) = {T̂n(θ)}n≥1

such that
lim
n→∞

Qn
θ{Ln(T̂n(θ)) = 0} = 1 (13)

and
Qn

θ - lim
n→∞

T̂n(θ) = bQ(θ). (14)

Thus, we have

lim
n→∞

Qn
θ

{
|T ∗

n | > K
}
≤ lim

n→∞
Qn

θ

{
|T ∗

n | > K, Ln(T̂n(θ)) ̸= 0
}

+ lim
n→∞

Qn
θ

{
|T ∗

n | > K, Ln(T̂n(θ)) = 0
}

≤ lim
n→∞

Qn
θ

{
Ln(T̂n(θ)) ̸= 0

}
+ lim

n→∞
Qn

θ

{
|T̂n(θ)|+ ε > K

}
.

9



The first and the second terms on the right-hand side converge to zero
by virtue of equalities (13) and (14).

Remark 2. If the conditions of Corollary 1 are satisfied, then by virtue of
Theorem 1, IV (ii), there exists an estimator T = {Tn}n≥1 such that

Tn = θ∗ +
Ln(θ

∗)

γQ(θ)
+Rn(θ), (15)

c−1
n (θ)Rn(θ)

Qn
θ−→ 0.

If θ∗ = bQ(θ) = θ and the distribution Φ from Theorem 1, f), is Gaussian,
then we obtain a consistent, linear, asymptotically normal estimator.
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ON A GENERALIZATION OF KHINCHIN’S THEOREM

V. BERIKASHVILI, G. GIORGOBIANI, V. KVARATSKHELIA

Abstract. A generalization of Khinchin’s theorem for weakly correlated random elements
with values in Banach spaces lp, 1 ≤ p <∞ is presented without proof.

The purpose of this paper is to generalize the following Khinchin’s theorem, which was
published in 1928 in the journal of the French Academy of Sciences [1]. The concepts and
background information about probability distributions in infinite-dimensional spaces, neces-
sary for further discussion, can be found in [2].

Let ξ1, ξ2, . . . , ξn, . . . be a sequence of real random variables, defined on the probability space

(Ω,F,P) with finite mathematical expectations E ξn <∞; denote Sn =
n∑
i=1

ξi, n = 1, 2, . . .. We

say that the given sequence of random variables satisfies the Law of Large Numbers (LLN), if
the sequence {Sn−ESn

n
} converges in probability to zero as n→∞, i.e. for every ε > 0

lim
n→∞

P
[∣∣∣∣Sn − ESn

n

∣∣∣∣ > ε

]
= 0.

Theorem 1. (A.Y. Khinchin, 1928). Let ξ1, ξ2, . . . , ξn, . . . be a sequence of random variables
such that for any positive integer n, ξn has a finite mathematical expectation and variance σ2

n.
Furthemore, let g be a nonnegative function, defined on the set of nonnegative integers such
that for the correlation coefficients %mn of ξm and ξn the following inequalities hold

|%mn| ≤ g(|m− n|), m, n = 1, 2, . . . .

If

lim
n→∞

1

n2

(
n−1∑
i=0

g(i)

)(
n∑
i=1

σ2
i

)
= 0, (1)

then the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.

In this paper [1] A. Khinchin introduced the well-established term ”Strong Law of Large
Numbers” (SLLN) and proved that the theorem formulated above provides a sufficient condi-
tion for the fulfillment of the SLLN if condition (1) is replaced by the condition

lim
n→∞

1

n2−δ

(
n−1∑
i=0

g(i)

)(
n∑
i=1

σ2
i

)
= 0

for some δ > 0.
Recall some general notions. Let X be a separable Banach space with a norm ‖ · ‖, X∗ be

its dual, 〈x∗, x〉 be a value of the functional x∗ ∈ X∗ at the point x ∈ X, (Ω,F,P) be a fixed
probability space. Denote by B(X) the Borel σ-algebra in X. A map ξ : Ω → X is called a
random element with values in X if ξ−1{B(X)} ⊂ F.

1991 Mathematics Subject Classification. 60B12; 60B11.
Key words and phrases. Law of large numbers, lp spaces, covariance operator, cross-covariance operator,

correlation coefficient.
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2 V. BERIKASHVILI, G. GIORGOBIANI, V. KVARATSKHELIA

It is said that a random element ξ with values in X has a weak p-order, p > 0, if E |〈x∗, ξ〉|p <
∞ for every x∗ ∈ X∗. If a random element ξ has a weak p-order, p > 1, then the expectation E ξ
exists and is defined as the Pettis integral of the random element ξ. Without loss of generality
we assume that all random elements considered below are centered (that is, E ξ=0). For a
random element ξ with the weak second order covariance operator Rξ : X∗ → X is defined as
follows:

〈x∗, Rξx
∗〉 = E 〈x∗, ξ〉2, x∗ ∈ X∗.

It is easy to see that Rξ is a nonnegative, symmetric and linear continuous operator. For
any symmetric nonnegative operator R : X∗ → X there is a Hilbert space H and a linear
continuous operator A : X∗ → H such that R = A∗A; the operator A is uniquely determined
up to isometry (see [2], Factorization Lemma, p. 123).

Random element ξ : Ω → X is called Gaussian if 〈x∗, ξ〉 is a Gaussian random variable for
any x∗ ∈ X∗. We say that an operator R : X∗ → X is a Gaussian covariance if there exists
a Gaussian random element with values in X such that its covariance operator coincides with
R.

Let X = H be a Hilbert space with the inner product (·, ·)H . An operator T : H → H is
called nuclear if it admits the representation

Th =
∞∑
i=1

(ai, h)Hbi h ∈ H,

and for some sequences {ai} and {bi} in H with
∞∑
i=1

‖ai‖H‖bi‖H <∞.

Let {ϕk} be an orthonormal basis in H. Then for the nuclear operator T : H → H the
series

∞∑
k=1

(Tϕk, ϕk)H (2)

converges, the sum (2) does not depend on the choice of the orthonormal basis and is called
the trace (tr(T )) of the operator T . If a random element ξ with values in a Hilbert space has
a strong second order (E ‖ξ‖2H < ∞) and Rξ is its covariance operator, then it is easy to see
that E ‖ξ‖2H = tr(Rξ).

Let ξ and η be random elements of weak second order with values in a Banach space X
(recall that E ξ = E η = 0). Cross-covariance operator Rξη : X∗ → X of ξ and η is defined by
the equality:

〈x∗, Rξηy
∗〉 = E 〈x∗, ξ〉〈y∗, η〉, x∗, y∗ ∈ X∗.

It is known that Rξη admits the factorization [3]:

Rξη = A∗ξVξηAη, (3)

where Aξ (resp. Aη) is a continuous linear operator from X∗ to some Hilbert space Hξ (resp.
Hη) such that Rξ = A∗ξAξ (resp. Rη = A∗ηAη), the set Aξ(X

∗) (resp. Aη(X
∗)) is dense in Hξ

(resp. in Hη), and Vξη : Hη → Hξ is a continuous linear operator and for the operator norm
we have ‖Vξη‖ ≤ 1.
Vξη is called a correlation coefficient and as in the one-dimensional case, is a measure of the

linear dependence of the random elements [3].
To prove the main result we need the following elementary lemma, which was actually

applied in [1].
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Lemma 2. Let αi, βi−1, %ij, i, j = 1, 2, . . . , n, be the sequences of nonnegative numbers and let

%ij ≤ β|i−j| for any i, j = 1, 2, . . . , n.

Then
n∑

i,j=1

%ijαiαj ≤ 2

(
n−1∑
i=0

βi

)(
n∑
i=1

α2
i

)
.

Consider the Banach space of all p-absolutely convergent sequences of real numbers lp, 1 ≤
p <∞, with the norm ‖·‖lp . As we know the dual space is l∗p = lq, pq = p+q, when 1 < p <∞,
and l∗1 = l∞.

Let ξ be a random element in lp, 1 ≤ p < ∞, with the covariance operator Rξ. Let ek =

(0, . . . ,
k

1, 0, . . .), k = 1, 2, . . ., be a sequence of unit vectors in the dual space l∗p. Recall that Rξ

is a Gaussian covariance operator if and only if (see [2], Theorem 5.6, p. 261)

∞∑
k=1

〈ek, Rξek〉p/2 <∞. (4)

Let us state the main result of this paper.

Theorem 3. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of weak second order random elements with
values in lp, 1 ≤ p < ∞, and let the covariance operator Rn ≡ Rξn : l∗p → lp, satisfy the
condition

σsn ≡
∞∑
k=1

〈ek, Rnek〉s/2 <∞, n = 1, 2, . . . , (5)

where s = min{2, p}. Let, besides there exists a nonnegative function g, defined on the set of
nonnegative integers such that for the correlation coefficient Vmn of ξm and ξn the following
inequalities hold

‖Vmn‖ ≤ g(|m− n|) for any m,n = 1, 2, . . . .

If

lim
n→∞

1

n2

(
n−1∑
i=0

g(i)

)(
n∑
i=1

σsi

)2/s

= 0, (6)

then

lim
n→∞

E

∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
s

lp

= 0. (7)

In particular the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.

Remark 4. The complete proof of Theorem 3 is published in [4].

When p = 2 Theorem 3 implies the following statement.

Corollary 5. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of strong second order random elements with
values in a separable Hilbert space and let a function g satisfies the requirements of Theorem
3. If

lim
n→∞

1

n2

(
n−1∑
i=0

g(i)

)(
n∑
i=1

tr(Ri)

)
= 0,

then the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.
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Corollary 6. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of weak second order random elements with
values in lp, 1 ≤ p ≤ 2, and let the covariance operators Rn ≡ Rξn satisfy the condition

σpn ≡
∞∑
k=1

〈ek, Rnek〉p/2 <∞, n = 1, 2, . . . .

If

lim
n→∞

1

n

(
n∑
i=1

σpi

)2/p

= 0, (8)

then the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.

If the random elements are pairwise independent (or not correlated), then obviously we can

assume that
n−1∑
i=0

g(i) = 1 for any positive integer n. Thus Theorem 3 implies the following

Corollary 7. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of pairwise independent weak second order
random elements with values in lp, 1 ≤ p < ∞, and let for any positive integer n covariance
operators Rn ≡ Rξn satisfy (3.2).

If

lim
n→∞

1

n2

(
n∑
i=1

σsi

)2/s

= 0, where s = min{2, p},

then the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.

In particular, for the case of a separable Hilbert space we have

Corollary 8. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of pairwise independent strong second order
random elements with values in a separable Hilbert space and let

lim
n→∞

1

n2

n∑
i=1

tr(Ri) = 0.

Then the sequence ξ1, ξ2, . . . , ξn, . . . satisfies the LLN.

Naturally the question arises about the validity of the main theorem of the paper in the
general Banach space. Does it remain true at least in the case of Banach spaces with an
unconditional basis and a finite cotype? The answer to this question is not yet known to us.
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Abstract 
This paper follows work on establishing comprehensive framework for investment projects valuation 

discussed in [3], [8], [12], and [20]. Previous work is focused on capturing strategic value of investment 

projects while also incorporating strategic decisions of competitors. Two main methodologies that comprise 

such valuation framework are Real Options Analysis and Game Theory. In this paper, it is attempted to price 

real options using Machine Learning (ML) methods. First, selected machine learning models are trained to 

predict option prices as given by The Black-Scholes formula. Having shown some promise by work discussed 

in [22] and [23], real-world data has been selected for pricing options and then training machine learning 

models on them. Finally, various investment projects have been simulated to price option to expand using 

Cox-Ross-Rubinstein binomial model discussed in [4] and then train machine learning models to predict it. 

This, in turn, has potential to incorporate market competition implicitly in the value of the strategic option 

during training process. Hence, machine learning approach can become real options pricing method that is 

valid not only for monopolistic markets. With this aim, section 1 of the paper gives brief introduction of 

option pricing methods, section 2 uses Nasdaq Futures historical prices for training ML models to price 

financial options, and section 3 uses simulated investment projects for training ML models and pricing 

options to expand. Complete code is available at github.com/leongache/Real-Options-Valuation-using-

Machine-Learning-Methods. 

1. Overview of classical option pricing methods 
This section briefly defines most commonly used methods for option valuation. The purpose of this section 

is to identify what makes each method usable in the first place and then what makes it less attractive in 

some practical use cases. 

Let’s start with The Black-Scholes model, also known as the Black-Scholes-Merton model. Most attractive 

feature of the model may be its closed form solution, it’s simplicity despite complicated mathematics 

behind it. On the other hand, the Black-Scholes model makes certain assumptions that in certain market 

conditions may result in prices that deviate from real-world results. E.g., constant risk-free rate and volatility 

of underlying asset become less evident in extreme/turbulent markets with unpredictable high volatility. 

Though, improvements of the Black-Scholes model that account for some of its disadvantages exist, its 

unrealistic assumptions make it hard to use the plain formula for accurate option pricing in all market 

conditions. 

Most flexible option pricing model that can improve on many of the Black-Scholes model limitations is 

Binomial Option Pricing model. It’s commonly used to price American-style options that can be exercised 

before expiration and have flexibility to price options with any payoff formula as well as incorporate 

variable inputs for risk-free rate, volatility, etc. in dynamic fashion. Although, it’s very hard to predict what 

those inputs will be equal to in future dates. Even if accurately predicted, incorporating variable inputs 

increases models’ complexity to the point when it may become hard to formulate. 
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Lastly, commonly used option pricing method is Monte Carlo simulation where numerous random paths for 

the price of an underlying asset are generated, each having an associated payoff. Then present value of 

payoffs is computed, and their average becomes an option price that values in all simulated scenarios. Just 

like Binomial Option Pricing model, this method can incorporate any option payoff and dynamically 

introduced inputs. Moreover, this method is not restricted to a single or any distribution of underlying asset 

unlike models with closed-form solutions as given by the Black-Scholes. All that gives Monte Carlo 

simulation substantial number of use-case in real-life applications. Main disadvantage of the method stays 

to be heavy computational load as it requires a large number of simulations to improve average accuracy. 

Next section in this paper introduces more recent approach to option pricing using artificial intelligence, 

mainly, machine learning (ML) methods. Using same or more number of inputs as in classical options pricing 

methodologies ML methods can be trained from both simulated and historical data to “learn” either 

observed option price or theoretical one given by option pricing method of our choice. Success of ML model 

will depend on quality of training data and its properties for generalization among other things. In case of 

creating successful ML model that accurately predicts option prices on out-of-sample data, one can 

conclude that disadvantages of classical option pricing models will no longer be a concern for both 

academia and practitioners. At its simplest form, machine learning approach is illustrated in figure below. 

Figure 1 input-output structure of supervise machine learning models 

 

2. Training ML models to learn The Black-Scholes formula 
This section carries an experiment of training most popular Machine Learning models to predict call and put 

option prices as given by The Black-Scholes formula. Building up on work in [22] this example uses real-

world prices of continuous Nasdaq Futures contracts publicly available on yahoo finance webpage. Figure 2 

shows results from [22] where more than 1.5 million random parameter constellations were used to 

simulate options prices and train models on them. Figure clearly identifies that all but one ML model under 

consideration seem to be able to price call options with different moneyness levels. 

Figure 2 Prediction error of call options prices for different ML models, source in ref. [22] 
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Above figure suggests that ML models can be used to price options, and in this section similar experiment is 

carried out now using actual data instead of simulated one for illustrative purposes. 

Using daily prices for Nasdaq futures starting from earliest available date as of 19 Sep 2001, at-the-money 

call and put prices are computed using following input parameters: 

- annual standard deviation of continuously compounded returns as a volatility input, 

- annual risk-free rate of 3%, and 

- time to expiration of 20 trading days. 

Code snippet below shows functions used to compute option prices for Nasdaq Futures data till most recent 

date as of time of writing, 23 Dec 2022. 

Code Snippet 1 The Black-Scholes call and put prices, source https://www.codearmo.com/python-tutorial/options-trading-black-
scholes-model 

 

Figure below shows complete dataset used for training and testing of ML models; this includes historical 

data of Nasdaq Futures as well as calculated option prices using formulas in Code Snippet 1. 

Figure 3 Nasdaq futures historical prices and option prices by The Black-Scholes (BS) model 

https://www.codearmo.com/python-tutorial/options-trading-black-scholes-model
https://www.codearmo.com/python-tutorial/options-trading-black-scholes-model
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Despite high volatility in times series, most recent 5% of complete data was selected as out-of-sample for 

testing purposes. Out of most common and fundamentally different ML models, the following 4 were 

selected: 

- K-nearest neighbors (KNN) 

- Multi-layer Perceptron (MLP) 

- Gradient Boosting Trees, specifically, LightGBM implementation of it 

- Support Vector Machines (SVM) 

In addition, standard scaler was used to standardize training and test data to have standard normal 

distributions before training any of above models. Moreover, a small sample of parameter distributions 

were selected in advance to run parameter optimization per each model, separately. For that purposes, 

Randomized Grid Search algorithm was selected. Specific ML configurations used are shown and described 

below. 

For KNN: 

- leaf_size: starting from 5, till 100, with steps of 5 

- n-neighbors: starting from 5, till 100, with steps of 5 

For MLP, fixed random state, 500 max iterations, lbfgs1 solver, tolerance of 1e-8 and: 

- alpha: [0.01,0.001,0.0001], 

- hidden_layer_sizes: [(5,5,5,), (5,), (5,5,)] 

For LightGBM, subsample and colsample_bytree of .8 and: 

- n_estimators: starting from 50, till 1000, with steps of 50 

- max-depth: starting from 3, till 10, with steps of 1 

For SVMs: 

- C: starting from .01, till 1, with steps of .01  
 

1 lbfgs - an optimizer in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–
Shanno algorithm (BFGS) using a limited amount of computer memory. 
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- gamma: starting from .01, till 1, with steps of .01 

It’s worth noting that default configuration for Randomized Grid Search has maximum number of iterations 

set to 10 and k-fold cross-validation set to 5 folds. Consequently, all models above will get 5-fold cross 

validation and 10 randomly chosen parameter combinations. Only exception is MLP as it only has 9 possible 

parameter combinations to search from, in which case exhaustive search will be implemented. It’s 

important to note that there is no right architecture choice for neural networks in general, not so even for 

such simple networks as MLPs. For that reason, an arbitrary number of nodes and 3 hidden layer variations 

is chosen without any particular reason. Same is true for distribution ranges of other ML model parameters. 

Code snippet below summarizes final modules used for an experiment. 

Code Snippet 2 Configuration of machine learning models used for option pricing 

 

Using total of 5380 days of real data, and having selected only 5% for testing purposes, models were trained 

on 5111 days and tested on next 269 days. Separate training for call and put option prices generated 

following dollar value errors per model class. 

Figure 4 Prediction errors on call and put prices from Nasdaq futures 
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Considering lack of training data, prediction errors look satisfactory with MLP having smallest errors for 

both call and put option prices and, hence, can be considered most suitable ML model for the task. Table 

below summarizes average error and min max ranges for all models individually. 

Table 1 Prediction error metrics per ML method 

 

Table above identifies MLP and LGB as better models then KNN and SVR given prediction performance on 

test dataset under consideration.  

Based on promising results from above, next section attempts to train selected ML models to price not 

financial but Real Options for investment projects valuation. 

3. Pricing real options, namely, option to expand using ML methods 
Most common examples of Real Options used for strategic investment valuations are: 

- Option to Expand 

- Option to Contract 

- Option to Defer 

- Option to Abandon 

- Option to Choose 

- Option to Switch Resources 

If investment project has a strategic value in it, at least one from above or some other advance real option is 

built into the project and its valuation becomes inevitable part of comprehensive analysis of value. 

Unfortunately, it’s widely known that Real Option valuation doesn’t account for the effect of competitors, 

and for those reasons is only valid for a monopolistic environment. Variety of techniques to account for 

competition within real option valuation framework has been developed and one example is to incorporate 

Game Theory discussed in [3]. While plausible, market competition may not follow equilibrium strategy 

metric knn_call mlp_call lgb_call svr_call knn_put mlp_put lgb_put svr_put

average error 22.66 9.61 17.04 23.64 24.06 8.74 9.74 19.33

min error 0.20 0.04 0.00 0.29 0.25 0.00 0.09 0.14

max error 82.39 27.39 45.59 63.58 82.94 32.32 59.41 66.93

max neg error -37.02 -8.64 -25.99 -63.58 -40.25 -10.54 -59.41 -66.93

max pos error 82.39 27.39 45.59 33.11 82.94 32.32 34.79 24.17
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derived by Game Theory models and then biases valuation even further. In this section, option to expand is 

computed for simulated investment projects data and machine learning models configured in previous 

section are trained to predict expansion option prices on unseen data. If concept of pricing real options with 

ML methods is proven, then training ML models on actual data is likely to solve monopolistic nature of real 

options pricing without need for explicit consideration of market competition effects. 

Let’s define formula for pricing real option using Cox-Ross-Rubinstein method of constructing binomial tree. 

Cone snippet for that is show next. 

 

Next fixed interest rate of 5%, investment horizon of 3 years, and 1-year binomial steps are used to price 

option to expand with expansion factor of 1.5 at 50% cost of current project value. One thousand 

simulations of random numbers for projects’ starting present value are drawn from range of values starting 

at 10 till 1000 with steps of 10, while volatility measures varying from 20 to 50% using 1% increments. As 

before, 5% of data is set aside for testing, and per each model prediction errors are graphed. 

Figure 5 Prediction error for ML models on price of option to expand 



- 8 - 
 

 

Obviously, SVMs didn’t lend themselves to accurately predict real option prices in the example but looking 

at the graph below excluding SVMs, it’s clear that all other ML models seem to predict option prices very 

closely. 

Figure 6 Prediction error for ML models on price of option to expand, excluding SVMs from the mix 

 

Finally, let’s look at average error and other prediction metrics in the table below. 

Table 2 Options to expand pricing, prediction errors 

 

metric knn_expand mlp_expand lgb_expand svr_expand

average error 3.09 1.93 0.26 24.03

min error 0.00 0.00 0.00 0.00

max error 16.36 8.80 2.45 131.65

max neg error -16.36 -8.80 -2.45 -131.65

max pos error 12.81 6.12 1.48 130.13
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Prediction error metrics suggest LGB as the best model for real options valuation. 

Conclusion 
This paper to some extent answered a question of whether Machine Learning models can be used to price 

financial options first and then real options. The former used real world data from historical prices Nasdaq 

Futures to compute option prices by The Black-Scholes model and then train ML models on them. The latter 

used simulated values of investment projects and their volatility estimates to compute predefined 

expansion option and then train ML models on them. Both experiments showed promising results with 

further room for improvements. If real option valuation using machine learning models can be statistically 

proven, strategic investment projects valuation formula could change from composite 1: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤 + 𝑅𝑒𝑎𝑙 𝑂𝑝𝑡𝑖𝑜𝑛𝑠 + 𝐺𝑎𝑚𝑒 𝑇ℎ𝑒𝑜𝑟𝑦 

To composite 2: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤 + 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑂𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 

Note that in composite 2, ML option price can already be trained to account for market competition. 
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