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Abstract

Characterization of variance optimal equivalent local martingale
measure plays key role in several important problems of statistics of
random processes. For stochastic volatility model with small diffu-
sion coefficient the given characterization is used for robust statistic
purposes.
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1 A financial market model

Let (Ω,F , F = (Ft)0≤t≤T , P ) be a filtered probability space with filtration
F satisfying the usual conditions, where T ∈ (0,∞] is a fixed time horizon.
Assume that F0 is trivial and FT = F .
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There exist d+ 1, d ≥ 1, primitive assets: one bond, whose price process
is assumed to be 1 at all times and d risky assets (stocks), whose Rd-valued
price process X = (Xt)0≤t≤T is a continuous semimartingale given by the
relation:

dXt = diag(Xt) dRt, X0 > 0, (1.1)

where diag(X) denotes the diagonal d × d-matrix with diagonal elements
X1, . . . , Xd, and the yield process R = (Rt)0≤t≤T is a Rd-valued continuous
semimartingale satisfying the structure condition (SC). That is (see Schweizer
[1]),

dRt = d⟨M̃⟩tλt + dM̃t, R0 = 0, (1.2)

where M̃ = (M̃)0≤t≤T is a Rd-valued continuous martingale, M̃ ∈ M2
0,loc(P ),

λ = (λt)0≤t≤T is a F -predictable Rd-valued process, and the mean-variance

tradeoff (MVT) process K̃ = (K̃)0≤t≤T of process R

K̃t :=

∫ t

0

λ′sd⟨M̃⟩sλs = ⟨λ′ · M̃⟩t <∞, P -a.s., t ∈ [0, T ]. (1.3)

Remark. Remember that all vectors are assumed to be column vectors.

Suppose that the martingale M̃ has the form

M̃ = σ ·M, (1.4)

whereM = (Mt)0≤t≤T is a Rd-valued continuous martingale,M ∈ M2
0,loc(P ),

σ = (σt)0≤t≤T is a d×d-matrix valued, F -predictable process with rank(σt) =
d for any t, P -a.s., the process (σ−1

t )0≤t≤T is locally bounded, and

⟨M̃⟩T =

∫ T

0

σt⟨M⟩tσ′
t <∞. P -a.s. (1.5)

Assume now that the following condition is satisfied: there exist fixed
Rd-valued, F -predictable process k = (kt)0≤t≤T such that

λ = λ(σ) = (σ′)−1k. (1.6)

In this case, from (1.2) we get

dRt = d⟨M̃⟩tλt + dM̃t = σtd⟨M⟩tσ′
t(σ

′
t)

−1kt + σtdMt

= σt(d⟨M⟩tkt + dMt) (1.7)
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and

K̃t =

∫ t

0

λ′sd⟨M̃⟩sλs =
∫ t

0

k′t((σ
′
t)

−1)′σtd⟨M⟩tσ′
t(σ

′
t)

−1kt

=

∫ t

0

k′td⟨M⟩tkt = ⟨k ·M⟩t := Kt.

From (1.3) we have

Kt <∞, P -a.s. for all t ∈ [0, T ]. (1.8)

Thus, if we introduce the process M0 = (M0
t )0≤t≤T by the relation

dM0
t = d⟨M⟩tkt + dMt, M0

0 = 0, (1.9)

then the MVT process K = (Kt)0≤t≤T of Rd-valued semimartingale M0 is
finite, and hence M0 satisfies SC.

Finally, the scheme (1.1), (1.2), (1.4), (1.6) and (1.9) can be rewritten in
the following form

dXt = diag(Xt) dRt, X0 > 0,

dRt = σtdM
0
t , R0 = 0,

dM0
t = d⟨M⟩tkt + dMt, M0 = 0,

(1.10)

where σ and k satisfy (1.5) and (1.8), respectively.
This is our financial market model.

2 Characterization of variance-optimal

equivalent local martingale measure

A key role in mean-variance hedging plays variance-optimal equivalent local
martingale measure (ELMM) (see, e.g., [2, 3, 4]).

We start with remark that the sets of ELMMs for processes X, R andM0

of form (1.10) coincide. Hence we can and will consider the simplest process
M0.

Introduce the notation

Me
2 :=

{
Q ∼ P :

dQ

dP
∈ L2(P ), M0 is a Q-local martingale

}
,
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and suppose that

(c.1) Me
2 ̸= ∅.

The solution P̃ of the optimization problem

EE2
T (MQ) → inf

Q∈Me
2

is called variance-optimal ELMM.
Here

dQ

dP

∣∣∣
FT

= ET (MQ),

and (Et(MQ))0≤t≤T is the Dolean exponential of martingale MQ.
It is well-known (see, e.g, Schweizer [1, 5]) that under condition (c.1)

variance-optimal ELMM P̃ exist.
Denote

z̃T :=
dP̃

dP

∣∣∣
FT

,

and introduce RCLL process z̃ = (z̃t)0≤t≤T by the relation

z̃t = EP̃ (z̃T/Ft), 0 ≤ t ≤ T.

Then, by Schweizer [1, 5],

z̃t = z̃0 +

∫ T

0

ζ ′t dM
0
t , (2.1)

where ζ = (ζt)0≤t≤T is the Rd-valued F -predictable process with∫ T

0

ζ ′t d⟨M⟩tζt <∞,

and the process (
∫ t

0
ζ ′sdM

0
s )0≤t≤T is a P̃ -martingale.

Relation (2.1) easily implies that the process z̃ is actually continuous.
Suppose, in addition to (c.1), that the following conditions is satisfied:

(c.∗) All P -local martingales are continuous.

This technical assumption is satisfied in stochastic volatility models, where
F = Fw is the natural filtration generated by the Wiener process.

4



It shown in Mania and Tevzadze [6], Mania et al. [7] that, under con-
ditions (c.1) and (c.*), density z̃T of variance optimal ELMM is uniquely
characterized by the relation

z̃T =
ET ((φ− k)′ ·M0)

EET ((φ− k)′ ·M0)
, (2.2)

where φ together with the pair (L, c) is the unique solution of the following
equation

ET ((φ− 2k)′ ·M)

ET (L)
= cE2

T (−k′ ·M), (2.3)

where L ∈M2
0,loc(P ), ⟨L,M⟩ = 0, c is a constant.

Moreover, the process ζ = (ζt)0≤t≤T from (2.1) has the form

ζt = (φt − kt)Et((φ− k)′ ·M0). (2.4)

Here φ = (φt)0≤t≤T is a Rd-valued, F -predictable process with∫ T

0

φ′
t d⟨M⟩tφt <∞.

Let τ be F -stopping time.
Denote ⟨k′ ·M⟩Tτ = ⟨k′ ·M⟩T − ⟨k′ ·M⟩τ .

Theorem (see also Biagini et al. [8], Laurent and Pham [9]).
1. Equation (2.3) is equivalent to equation

ET (φ′ ·M∗)

ET (L)
= ce⟨k·M⟩T , (2.5)

where the Rd-valued process M∗ = (M∗
t )0≤t≤T is given by the relation

dM∗
t = 2d⟨M⟩tkt + dMt, M∗

0 = 0.

2. a) If there exists the martingale m = (mt)0≤t≤T , m ∈ M2
0,loc(P ) such

that
e−⟨k′·M⟩T = c+mT , ⟨m,M⟩ = 0, (2.6)

then φ ≡ 0 and LT =
∫ t

0
1

c+ms
dms solve the equation (2.5).

In this case

z̃T =
ET (−k′ ·M0)

EET (−k′ ·M0)
, (2.7)
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process ζ = (ζt)0≤t≤T from (2.1) is equal to

ζt = −ktEt(−k′ ·M0),

and

E

[( z̃T
z̃τ

)2/
Fτ

]
=

1

E(e−⟨k′·M⟩Tτ/Fτ )
.

b) If there exist Rd-valued F -predictable process ℓ = (ℓt)0≤t≤T ,∫ T

0
ℓ′td⟨M⟩tℓt <∞, and

e⟨k
′·M⟩T = c+

∫ T

0

ℓ′t dM
∗
t ,

then L ≡ 0 and φt =
ℓt

c+
∫ t
0 ℓ′sdM

∗
s
solve the equation (2.5).

In this case,

z̃T = ET (−k′ ·M) (:= ẑT , the density of minimal martingale measure P̃ ),

and

E

(( z̃T
z̃τ

)2/
Fτ

)
= EP ∗(

e⟨k
′·M⟩Tτ

/
Fτ

)
,

where dP ∗ = ET (−2k′ ·M)dP .

Proof. 1. By the Yor formula

ET
(
(φ− 2k)′ ·M

)
= ET (ψ′ ·M − 2k′ ·M)

= ET
(
φ′ ·

(
M + 2

∫ ·

0

d⟨M⟩tkt
)
− 2

∫ ·

0

ψ′
td⟨M⟩tkt − 2k′ ·M

)
= ET (φ′ ·M∗)ET (−2k′ ·M),

and
E2
T (−k′ ·M) = ET (−2k′ ·M)e⟨k

′·M⟩T ,

Assertion follows.
2. a) Note at first that ⟨L,M⟩ = 0. Further, by the Îto formula we can

write

ln(c+mt)− ln c =

∫ t

0

1

c+ms

dms −
1

2

∫ t

0

1

(c+ms)2
dms .
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Hence
eln(c+mT )−ln c = ET (L)

and thus

ET (L) =
c+mT

c
=
e−⟨k′·M⟩T

c
.

Finally, by the Bayes rule and the Girsanov Theorem,

E

(( z̃T
z̃τ

)2/
Fτ

)
=
E(ET (−2k′ ·M)e−⟨k′·M⟩T /Fτ )

E2(ET (−k′ ·M)e−⟨k′·M⟩T /Fτ )

=
E∗(c+mT/Fτ )

(Ê(c+mτ/Fτ ))2

E2
T (−k′ ·M)

ET (−2k′ ·M)
=

c+mτ

(c+mτ )2
· e⟨k′·M⟩τ

=
1

E(e−⟨k′·M⟩Tτ/Fτ )
.

The proof of case 2 b) is quite analogous.

3 Stochastic volatility model with small dif-

fusion coefficient

Denote by BallL(0, r), r ∈ [0,∞), the closed r-radius ball in the space L =
L∞(dt× dP ), with the center at the origin, and let

H :=
{
h = {hij}, i, j,= 1̂, d : h is F -predictable, d× d-matrix valued

process, rank(h) = d, hij ∈ BallL(0, r), r ∈ [0,∞)
}
.

The class H is called the class of alternatives.
Fix the value of small parameter δ > 0, as well as d × d-matrix valued

F -predictable process σ0 = (σ0
t )0≤t≤T , rank(σ

0) = d, with∫ T

0

σ0
t d⟨M⟩t(σ0

t )
′ <∞ P -a.s.

Denote
Aδ = {σ : σ = σ0 + δh, h ∈ H}.

Consider the set of processes {Rσ (or Xσ), σ ∈ Aδ}, which represents the
misspecification of asset price model.
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For simplicity, consider the one-dimensional case (d = 1).
Let a(t, y) be a drift coefficient of volatility process. Consider the stochas-

tic volatility model with misspecified asset price model and fully specified
volatility process model with small diffusion coefficient ε,

dXt = Xt dRt, X0 > 0,

dRt = (σ0
t + δht)dM

0
t , R0 = 0,

dYt = a(t, Yt)dt+ εdwσ
t , Y0 = 0, 0 ≤ t ≤ T,

where
dM0

t = ktdt+ dwR
t ,

h ∈ H and σ0
t is the center of the confidence interval of volatility, which

shrinks to
σt = f

1
2 (Yt).

Here, f(·) is a continuous one-to-one positive locally bounded function (e.g.,
f(x) = ex).

Note that to robust statistics problems for stochastic volatility model
with small randomness are already devoted our papers [10, 11].
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