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The insurance rate is the portion of the insurance limit the insurer must charge the insured in exchange for 

transferring the risk. It can be decomposed into two parts: the risk rate and the so-called loading. The first is 

responsible for covering future losses (which is, of course, probabilistic in nature), while the purpose of the second 

is to generate the funds necessary for business activities (such as salaries, profits, etc.). 

The work of actuaries in tariffication typically involves offering the company a risk rate. If the insurance company 

already has experience in insuring the product in question (i.e., if it has accumulated certain statistical data), this 

information will be used when determining the new risk premium. Indeed, there are several classical methods for 

determining an "adequate" risk premium based on experience (an "adequate" risk premium is one that ensures 

coverage of future losses with a certain, reasonable reliability, and within which the insurance product will remain 

(in a certain sense) competitive in the market). 

The above problem naturally leads to the concept of a break-even rate: for any fixed (completed) portfolio, the 

break-even rate is the rate at which the insurance company would go to zero profit in the given (existing, portfolio-

specific) scenario. In the simple case, when all policies in a given portfolio have the same contribution (the duration 

of the policies is the same: 𝑡𝑖 ≡ 𝑡; the portfolio includes the total duration of the policies), it takes the following 

form: 

 
𝐵𝐸 =

∑ 𝐶𝑖𝑖

∑ 𝑆𝑖𝑖
 

(1) 

 

where 𝐶𝑖 are the loss amounts (which can be 0), while 𝑆𝑖 are the insurance limits. A typical example of such a 

portfolio is a cohort — for instance, a set of policies "born" in a specific calendar year. Note also that in this case, we 

are referring to the corresponding rate for a policy with duration 𝑡. 

In a more general case (which is more applicable when the portfolio is defined by fixing the calendar period, i.e., 

policies that were active for at least one day during some period 𝑃), we can consider the following (allocated) form: 

 

 
𝐵𝐸 =

∑ 𝐶𝑖𝑖

∑ 𝑆𝑖
𝑡𝑖

𝛼𝑖

 
(2) 

 

where 𝐶𝑖 – total loss amount in the period 𝑃 of the 𝑖 -th policy, 𝑡𝑖 = |𝑇𝑖 ∩ 𝑃|, and 𝑇𝑖 is the duration of the policy, 

while 𝛼 is any duration of time (to which the calculated premium corresponds); or the following form: 

 
𝐵𝐸 =

∑ �̂�𝑖𝑖

∑ 𝑆𝑖
𝑇𝑖

𝛼𝑖

 
(3) 

 

where �̂�𝑖 – the total loss amount of the 𝑖-th policy, regardless of whether the loss occurred in the period 𝑃 or not. 
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Both the numerator and the denominator of the fractions above are random in nature, and the 𝐵𝐸 calculated for 

any particular portfolio is only one manifestation of this randomness (only one realization of a random variable), by 

which to make a direct decision is, to put it mildly, naive. 

The solution lies in studying the probabilistic nature of the 𝐵𝐸 (as of random variable). Its analysis using classical 

statistical methods, specifically by independent and identically distributed (i.i.d.) realizations, is usually not feasible, 

since using very old data in relation to a lively business is not advisable — there is a high chance that it no longer 

reflects the current reality. Additionally, considering many small (disjoint) portfolios is not practically profitable, as 

in this case, the dispersion of 𝐵𝐸 increases so much that the obtained results become practically useless. 

Another approach may be to study all the random variables involved in the 𝐵𝐸, determining the nature of their 

dependencies, and then use Monte Carlo methods to "artificially" generate a large amount of information, which 

can then be used to study the random nature of 𝐵𝐸. This method is indeed actively used by insurance companies, 

although it is also associated with certain challenges: specifically, the fact that statistical dependencies between 

insurance indicators are often non-trivial and complex; the study and modeling of these dependencies (if it is 

possible) requires significant time and intellectual resources, which poses a challenge for insurance companies that 

need to solve many such problems within a reasonably short time. To illustrate this, and, most importantly, to 

discuss the method we have proposed, let us introduce the concept of an insurance (stochastic/marked point) 

process, which has the following form: 

 𝑍𝑛 ≡ (𝐾𝑛 , 𝑟𝑛, 𝑆𝑛, 𝐻𝑛, 𝐶𝑛),   𝑛 ≥ 1 
 

(4) 

where 𝐾𝑛 are the moments of appearance, or jumps, of the point process ((𝑁𝑡)𝑡≥0, that counts the insured policies 

up to moment 𝑡. In this context, we can use a homogeneous Poisson process with intensity 𝜆 (or intensity 𝜆(𝑡) in 

the case of high seasonality). 

𝑃(𝑁𝑡+𝑠 − 𝑁𝑡) =
(𝑠𝜆)𝑘𝑒−𝑠𝜆

𝑘!
     ან     𝑃(𝑁𝑡+𝑠 − 𝑁𝑡) =

(∫ 𝜆(𝑦)𝑑𝑦
𝑡+𝑠

𝑡
)

𝑘
𝑒− ∫ 𝜆(𝑦)𝑑𝑦

𝑡+𝑠
𝑡

𝑘!
 

The remaining components are the marks of the point process: 

𝑟𝑛 – the duration of the 𝑛-th appeared (insured) policy (typically constant); 

𝑆𝑛 - the insurance limit of the 𝑛-th insured policy. For its modeling, various well-known families of continuous 

distributions are used, typically right-skewed ones; 

𝐻𝑛  - the number of losses incurred by the 𝑛-th policy. For its modeling, Poisson, negative binomial, Bernoulli, and 

other well-known discrete distributions are typically used; 

𝐶𝑛  - expresses the share of the total (overall) amount of losses of the 𝑛-th policy relative to the insurance limit. We 

can think of it as a mixture: 

𝐹𝐶𝑛
(𝑥) = 𝛼0 + 𝛼1𝐹1(𝑥) + 𝛼2𝐹2(𝑥) + ⋯ 

where 𝛼𝑖 is the probability that the policy will suffer the 𝑖 losses, and 𝐹𝑖(𝑥) is the distribution function of the share 

of the total amount of loss in the insurance limit, given that the policy has suffered the 𝑖 losses. For example, if 

𝐻𝑛~𝑃𝑜𝑖𝑠(𝜆): 

𝛼𝑖 =
𝜆𝑖𝑒−𝜆

𝑘!
 



To model the 𝐹𝑖(𝑥) distributions, Gamma, Weibull, Pareto, and other distributions are often used (although it should 

be noted that not with the direct form, since the support of 𝐶𝑛- is [0,1],  To avoid this inconvenience, the Beta 

distribution is sometimes used, although there is no inherent need for this (random variables of the type 𝐶𝑛 ≡

min(𝑌𝑛, 1) are often useful)). 

It is possible to consider 𝛼𝑖 i.e., 𝐻𝑛 , and 𝐹𝑖(𝑥), i.e., 𝐶𝑛 , as independent of 𝑡, i.e., 𝐾𝑛, although it would not be natural 

to consider them as independent of 𝑆𝑛 as well. Thus, more generally, we can write: 

𝐹𝐶𝑛|𝑆𝑛=𝑠(𝑥) = 𝛼0(𝑠) + 𝛼1(𝑠)𝐹1 (𝑥, 𝜆1
(1)(𝑠), … , 𝜆𝑚1

(1)(𝑠)) + 𝛼2(𝑠)𝐹2 (𝑥, 𝜆1
(2)(𝑠), … , 𝜆𝑚2

(2)(𝑠)) + ⋯ 

where  𝜆1
(𝑖)(𝑠), … , 𝜆𝑚𝑖

(𝑖) (𝑠) are the parameters of the distribution 𝐹𝑖, depending on 𝑠. 

In the case where, for any 𝑆𝑛, the share of losses does not depend on the order of the losses — that is, if the shares 

of losses occurring first, second, etc., in the sum insured are independent and identically distributed random 

variables, with the distribution function of which is  𝐹, then: 

𝐹𝐶𝑛|𝑆𝑛=𝑠(𝑥) = ∑ 𝛼𝑖(𝑠)(∗𝑗=0
𝑖−1 𝐹̅̅ ̅̅ ̅̅ ̅̅ )(𝑥)

∞

𝑖=0

 

where ∗𝑗=0
𝑖 𝐹 = 𝐹 ∗ … ∗ 𝐹, 𝑖 ≥ 1, represents convolution of 𝐹, 𝑖 + 1 times to itself,  ∗𝑗=0

0 𝐹 ≡ 1, and: 

�̅�(𝑥) ≔ {
𝐺(𝑥), 𝑥 < 1
1,                𝑥 ≥ 1

 

Note that the given model is useful when using the (3) form of 𝐵𝐸. In the case of using the (2) form, it is also 

essential to consider at what point in time the loss occurred. Therefore, in this case, the corresponding mark 

should be added to the (4) model. Let's start with a simple case; assume the following: 

𝐻𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝑆𝑛)) 

That is, 𝐻𝑛  is Bernoulli random variable (the probability of "success" depends on 𝑆𝑛), meaning that the loss either 

occurs (once) or does not occur. An example of this type of insurance is life insurance or so-called "insurance until 

the first loss". In such cases, model (4) can be easily generalized by adding one mark: 

 𝑍𝑛 ≡ (𝐾𝑛, 𝑟𝑛, 𝑆𝑛, 𝐻𝑛 , 𝐶𝑛 , 𝐾𝑛
𝑐),   𝑛 ≥ 1 

 
(5) 

where 𝐾𝑛
𝑐 is a random moment in the life period of the policy, that express the moment of loss occurrence, or it is 0 

under the condition of no loss. Thus: 

𝑠𝑢𝑝𝑝(𝐾𝑛
𝑐) = {0} ∪ [𝐾𝑛 , 𝐾𝑛 + 𝑟𝑛] 

For example, if, in the loss condition, the moment of loss is uniformly distributed over the lifetime of the policy 

(which is a natural assumption under non-seasonality), then: 

𝐹𝐾𝑛
𝑐 |𝑆𝑛=𝑠(𝑥) = (1 − 𝑝(𝑆𝑛)) + 𝑝(𝑆𝑛)𝐹𝑈𝑛𝑖𝑓([𝐾𝑛,𝐾𝑛+𝑟𝑛])(𝑥) 

where 𝐹𝑈𝑛𝑖𝑓([𝐾𝑛,𝐾𝑛+𝑟𝑛])(𝑥)  is the distribution function of a uniformly distributed random variable on the interval 

[𝐾𝑛, 𝐾𝑛 + 𝑟𝑛]. 

If we do not assume that 𝐻𝑛  is Bernoulli random variables, then model (5) can be generalized as follows: 



 𝑍𝑛 ≡ (𝐾𝑛, 𝑟𝑛, 𝑆𝑛 , 𝑀𝑛 = (𝐾𝑛,𝑚
𝑐 , 𝐶𝑛,𝑚)

𝑚≥1
) ,   𝑛 ≥ 1 

 

(6) 

where 𝑀𝑛 is a marked point process on the interval [𝐾𝑛 , 𝐾𝑛 + 𝑟𝑛] (which we can consider as a random element), 

where 𝐾𝑛,𝑚
𝑐  are the moments of occurrence of the point process (𝑁𝜏

𝑐)𝜏∈[𝐾𝑛,𝐾𝑛+𝑟𝑛], with intensity 𝜆(𝑆𝑛), or, more 

generally, when the loss is seasonal, with intensity 𝜆(𝑆𝑛 , 𝑡) (for practical reasons, it might be more appropriate to 

consider an even more general form: 𝜆(𝑆𝑛 , 𝑡, 𝑡 − 𝐾𝑛)— when the loss depends on the period that has passed since 

the policy was started); And 𝐶𝑛,𝑚 is the mark, which expresses the amount of the loss: the share of the loss amount 

in the insurance limit, the distribution of which also depends on 𝑆𝑛. 

Obviously, in standard cases (when we are not dealing with insurance that involves the automatic restoration of the 

limit, thus the total amount loss should not exceed the insurance limit), instead of 𝐶𝑛,1, 𝐶𝑛,2, … it would be more 

appropriate to consider the sequence 𝑋𝑛,1 (≡ 𝐶𝑛,1 ), 𝑋𝑛,2, 𝑋𝑛,3, …  where: 

𝑋𝑛,𝑖 = min (𝐶𝑛,𝑖 , 1 − ∑ 𝑋𝑗

𝑖−1

𝑗=1
),   ∀𝑖 ≥ 2 

and consider the process 

 𝑍𝑛 ≡ (𝐾𝑛, 𝑟𝑛, 𝑆𝑛, 𝑀𝑛 = (𝐾𝑛,𝑚
𝑐 , 𝑋𝑛,𝑚)

𝑚≥1
) ,   𝑛 ≥ 1 

 

(7) 

Let us return to the task of estimating 𝐵𝐸: obviously, if the probabilistic nature of the 𝑍𝑛 process is fully investigated, 

we can generate many of its "trajectories" through Monte Carlo simulations, generate many "point estimates" of 𝐵𝐸, 

and study them. However, as we mentioned above and as became clear from the construction of the process, 

studying these relationships in detail is a rather difficult task. In essence (and in practice), we have only one 

realization of it: the real statistics of the company. Nevertheless, in non-parametric statistics, methods based on sub-

selections are known, which we can also use in this case. 

To do this, let us consider the stochastic process (𝑅𝛽)
𝛽∈Γ

 derived from 𝑍𝑛, where Γ = ℬ([0, 𝑇]) ([0, 𝑇] is the time 

interval over which we observe the 𝑍𝑛 process (or the process (𝑁𝑡)𝑡≥0 and its marks), and ℬ([0, 𝑇]) is the sigma-

algebra of its Borel subsets; for practical purposes, we could obviously just take the set of open subsets). This process 

can be called the 𝜶 risk-rate process and defined as follows: for model (5): 

 

 
𝑅𝛽 =

∑ 𝐶𝑛𝑆𝑛𝐾𝑛
𝑐∈𝛽

∑ 𝑆𝑛
|𝛽 ∩ [𝐾𝑛,  𝐾𝑛 + 𝑟𝑛]|

𝛼𝐾𝑛∈[0,𝑇]

 
(8) 

and for model (7): 

 
𝑅𝛽 =

∑ (∑ 𝑋𝑛.𝑚𝑆𝑛𝐾𝑛,𝑚
𝑐 ∈𝛽 )𝐾𝑛∈[0,𝑇]

∑ 𝑆𝑛
|𝛽 ∩ [𝐾𝑛,  𝐾𝑛 + 𝑟𝑛]|

𝛼𝐾𝑛∈[0,𝑇]

 
(9) 

 

From the one "trajectory" of 𝑍𝑛, we can obtain one "trajectory" of (𝑅𝛽)
𝛽∈Γ

; and after fixing the length of time �̂�, the 

set: 

{𝑅𝛽:  |𝛽| = �̂�}. 



Obviously, the latter is an infinite set, but for practical purposes, by means of sub-selections, for any fixed 𝑛0, we 

can obtain (one of) the following set(s): 

𝐁𝐄𝑛0,�̂� ⊂ {𝑅𝛽:  |𝛽| = �̂�},     where  𝑐𝑎𝑟𝑑(𝐁𝐄𝑛0,�̂�) = 𝑛0, 

Through this, we can estimate the distribution of 𝐵𝐸 (the empirical results of this procedure for a specific example 

are discussed below).  

With the inspired of Bradley Efron's bootstrap idea, we considered a more general model: 

(�̃�𝛽)
𝛽∈Γ1

 ,  where    Γ1 = {∏ 𝛽𝑖

𝜅

𝑖=1
:   ∀𝑖: 𝛽𝑖 ∈ ℬ([0, 𝑇]) & 𝑐𝑎𝑟𝑑(𝜅) < ℵ0} 

and (for model (5)): 

 
�̃�𝛽 ≡ �̃�∏ 𝛽𝑖

𝜅
𝑖=1

=
∑ (∑ 𝐶𝑛𝑆𝑛𝐾𝑛

𝑐∈𝛽𝑖
)𝜅

𝑖=1

∑ (∑ 𝑆𝑛
|𝛽𝑖 ∩ [𝐾𝑛 ,  𝐾𝑛 + 𝑟𝑛]|

𝛼𝐾𝑛∈[0,𝑇] )𝜅
𝑖=1

 
(10) 

or (for model (7)): 

 
�̃�𝛽 =

∑ (∑ (∑ 𝑋𝑛.𝑚𝑆𝑛𝐾𝑛,𝑚
𝑐 ∈𝛽𝑖

)𝜅
𝑖=1 )𝐾𝑛∈[0,𝑇]

∑ (∑ 𝑆𝑛
|𝛽𝑖 ∩ [𝐾𝑛 ,  𝐾𝑛 + 𝑟𝑛]|

𝛼𝐾𝑛∈[0,𝑇] )𝜅
𝑖=1

 
(11) 

In this case as well, for fixed 𝛼 and 𝑛0 , we can obtain: 

𝐁𝐄̅̅ ̅̅
𝑛0,�̂� ⊂ {�̃�𝛽 ≡ �̃�∏ 𝛽𝑖

𝜅
𝑖=1

:  ∑ 𝛽𝑖

𝜅

𝑖=1
= �̂�} ,     სადაც 𝑐𝑎𝑟𝑑(𝐁𝐄̅̅ ̅̅

𝑛0,�̂�) = 𝑛0. 

Below are the simulation results (using the density Kernel estimates), where the results of 𝐁𝐄𝑛0,�̂� and 𝐁𝐄̅̅ ̅̅
𝑛0 ,�̂� are 

compared to the 𝐵𝐸 distribution for the time length �̂� for two examples. In the first (left), it is assumed that 𝐻𝑛  and 

𝐶𝑛  are independent of 𝑆𝑛, while in the second (right), they are not (we will not provide the technical details of the 

dependence here): 

 

The blue figure is bounded by the density estimate of the 𝐵𝐸 distribution, the green figure is bounded by the density 

estimate obtained from 𝐁𝐄̅̅ ̅̅
𝑛0,�̂�, and the red figure is bounded by 𝐁𝐄𝑛0,�̂�. As we can see, the estimations with the so-

called "subsampling with replacement" (𝐁𝐄̅̅ ̅̅
𝑛0,�̂�) is better than those with the so-called "subsampling without 

replacement" (𝐁𝐄𝑛0,�̂�). 



Due to simplicity and, at first glance, naturalness, it may seem acceptable to consider the following special case of 

the above processes: 

(�̂�𝑡)
0≤𝑡<𝑇−�̂�

 ,      where  �̂�𝑡 = 𝑅[𝑡, 𝑡+�̂�] 

and obtaining an estimate through it: 

𝐁𝐄̿̿ ̿̿
𝑛0,�̂� ⊂ {�̂�𝑡: 0 ≤ 𝑡 < 𝑇 − �̂�} 

Let us compare the result obtained from (12)-(13) with the results obtained above: 

 

The result obtained from (12)-(13) is highlighted in yellow. As we can see, the quality of estimation is much lower 

than the estimates obtained above. 

Through simulations, we can empirically observe one more thing: during the estimation, how we are momentarily 

dependent on the one trajectory that is "in our hands." Consider the six trajectories of 𝑍𝑛 and the trajectories of 

�̃�𝛽 and �̂�𝑡 obtained from it (the image below shows the trajectories of �̂�𝑡). 

 

 



For which the density estimates are as follows: 

 

 

As we can see, (�̂�𝑡)
0≤𝑡<𝑇−�̂�

, despite its naturalness, does not provide reliable estimates: the estimate depends 

significantly on the trajectory. This cannot be said about the estimate obtained with (�̃�𝛽)
𝛽∈Γ1

, which seems quite 

reliable for practical purposes. 
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