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1 Introduction

Consider the stochastic volatility model described by the following system of
SDE:

dXt = Xt dRt, X0 > 0,

dRt = µt(Rt, Yt) dt+ σt dw
R
t , R0 = 0,

σ2
t = f(Yt),

dYt = a(t, Yt;α) dt+ ε dwσt , Y0 = 0,

(1.1)
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where w = (wR, wσ) is a standard two-dimensional Wiener process, de-
fined on complete probability space (Ω,F , P ), Fw = (Fw

t )0≤t≤T is the P -
augmentation of the natural filtration Fw

t = σ(ws, 0 ≤ s ≤ t), 0 ≤ t ≤ T ,
generated by w, f(·) is a continuous one-to-one positive locally bounded
function (e.g., f(x) = ex), α = (α1, . . . , αm), m ≥ 1, is a vector of unknown
parameters, and ε, 0 < ε < 1, is a small number. Assume that the system
(1.1) has an unique strong solution.

Suppose that the sample path (ys)0≤s≤t comes from the observations

of process (Ỹs)0≤s≤t with distribution P̃ ε
α from the shrinking contamination

neighborhood of the distribution P ε
α of the basic process Y = (Ys)0≤s≤t. That

is,

dP̃ ε
α

dP ε
α

| Fw
t = Et(εN ε), (1.2)

where N ε = (N ε
s )0≤s≤t is a P ε

α-square integrable martingale, Et(M) is the
Dolean exponential of martingale M .

In the diffusion-type processes framework (1.2) represents the Huber gross
error model (as it explain in Remark 2.3). The model of type (1.2) of con-
tamination of measures for statistical models with filtration was suggested
by Lazrieva and Toronjadze [1].

In Section 2, we study the problem of construction of robust estimators
for contamination model (1.2).

In subsection 2.1, we give a description of the basic model and definition
of consistent uniformly linear asymptotically normal (CULAN) estimators,
connected with basic model (Definition 2.1).

In subsection 2.2, we introduce a notion of shrinking contamination neigh-
borhood, described in terms of contamination of nominal distributions, which
naturally leads to the class of alternative measures (see (2.18) and (2.19)).

In the same subsection, we study the asymptotic behaviour of CULAN
estimators under alternative measures (Proposition 2.2), which is the basis
for the formulation of the optimization problem.

In subsection 2.3, the optimization problem is solved which leads to con-
struction of optimal B-robust estimator (Theorem 2.1).
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2 Construction of CULAN estimators

2.1 Basic model

The basic model of observations is described by the SDE

dYs = a(s, Y ;α) ds+ ε dws, Y0 = 0, 0 ≤ s ≤ t, (2.1)

where t is a fixed number, w = (ws)0≤s≤t is a standard Wiener process
defined on the filtered probability space (Ω,F , F = (Fs)0≤s≤t, P ) satisfying
the usual conditions, α = (α1, . . . , αm), m ≥ 1, is an unknown parameter
to be estimated, α ∈ A ⊂ Rm, A is an open subset of Rm, ε, 0 < ε ≪ 1,
is small parameter (index of series). In our further considerations all limits
correspond to ε→ 0.

Denote by (Ct,Bt) a measurable space of continuous on [0, t] functions
x = (xs)0≤s≤t with σ-algebra Bt = σ(x : xs, s ≤ t). Put Bs = σ(x : xu, u ≤
s).

Assume that for each α ∈ A, the drift coefficient a(s, x;α), 0 ≤ s ≤ t,
x ∈ Ct is a known nonanticipative (i.e., Bs-measurable for each s, 0 ≤ s ≤ t)
functional satisfying the functional Lipshitz and linear growth conditions L:

L

|a(s, x1;α)− a(s, x2;α)| ≤ L1

∫ s

0

|x1u − x2u| dku + L2|x1s − x2s|,

|a(s, x;α)| ≤ L1

∫ s

0

(1 + |xu|) dku + L2(1 + |xs|),

where L1 and L2 are constants, which do not depend on α, k = (k(s))0≤s≤t
is a non-decreasing right-continuous function, 0 ≤ k(s) ≤ k0, 0 < k0 < ∞,
x1, x2 ∈ Ct.

Then, as it is well known (see, e.g., Lipster and Shiryaev [2]), for each α ∈
A, the equation (2.1) has an unique strong solution Y ε(α) = (Y ε

s (α))0≤s≤t
and, in addition (see Kutoyants [3]),

sup
0≤s≤t

|Y ε
s (α)− Y 0

s (α)| ≤ Cε sup
0≤s≤t

|ws| P -a.s.,

with some constant C = C(L1, L2, k0, t), where Y
0(α) = (Y 0

s (α))0≤s≤t is the
solution of the following nonperturbated differential equation

dYs = a(s, Y ;α) ds, Y0 = 0. (2.2)
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Change of initial problem of estimation of parameter α by the equivalent
one, when the observations are modelled according to the following SDE

dXs = aε(s,X;α) ds+ dws, X0 = 0, (2.3)

where aε(s, x;α) =
1
ε
a(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.

It it clear that if Xε(α) = (Xε
s (α))0≤s≤t is the solution os SDE (2.3), then

for each s ∈ [0, t], εXε
s (α) = Y ε

s (α).
Denote by P ε

α the distribution of process Xε(α) on the space (Ct,Bt),i.e.,
P ε
α is the probability measure on (Ct,Bt), induced by the process Xε(α). Let
Pw be a Wiener measure on (Ct,Bt). Denote X = (Xs)0≤s≤t a coordinate
process on (Ct,Bt), that is, Xs(x) = xs, x ∈ Ct.

The conditions L guarantee that for each α ∈ A, the measures P ε
α and

Pw are equivalent (P ε
α ∼ Pw), and if we denote zα,εs = dP ε

α

dPw | Bs the density
process (likelihood ratio process), then

zα,εs (X) = Es(aε(α) ·X) := exp

{∫ s

0

aε(u,X;α) dXu−
1

2

∫ s

0

a2ε(u,X;α) du

}
.

Introduce a class Ψ of Rm-valued nonanticipative functionals ψ, ψ : [0, t]×
Ct ×A → Rm such that for each α ∈ A and ε > 0,

1) Eα

∫ t

0

|ψ(s,X;α)|2ds <∞, (2.4)

2)

∫ t

0

|ψ(s, Y 0(α);α)|2ds <∞, (2.5)

3) uniformly in α on each compact K ⊂ A,

P ε
α − lim

ε→0

∫ t

0

|ψ(s, εX;α)− ψ(s, Y 0(α);α)|2ds = 0, (2.6)

where | · | is an Euclidean norm in Rm, P ε
α − limε→0 ζε = ζ denotes the

convergence P ε
α{|ζε − ζ| > ρ} → 0, as ε→ 0, for all ρ, ρ > 0.

Assume that for each s ∈ [0, t] and x ∈ Ct, the functional a(s, x;α)is
differentiable in α and gradient ȧ =

(
∂
∂α1

a, . . . , ∂
∂αm

a
)′
belongs to Ψ (ȧ ∈ Ψ),

where the sign “ ′ ” denotes a transposition.
Then the Fisher information process

Iεs (X;α) :=

∫ s

0

ȧε(u,X;α)[ȧε(u,X;α)]′du, 0 ≤ s ≤ t,
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is well-defined, and moreover, uniformly in α on each compact,

P ε
α − lim

ε→0
ε2Iεt (α) = I0t (α), (2.7)

where

I0t (α) :=

∫ t

0

ȧ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ ds.

For each ψ ∈ Ψ, introduce the functional ψε(s, x;α) :=
1
ε
ψ(s, εx;α) and

matrices Γψtε(α) and γ
ψ
tε(α):

Γψtε(X,α) : =

∫ t

0

ψε(s,X;α)[ψε(s,X;α)]′ ds, (2.8)

γψtε(X,α) : =

∫ t

0

ψε(s,X;α)[ȧε(s,X;α)]′ ds. (2.9)

Then from (2.6) it follows that uniformly in α on each compact,

P ε
α − lim

ε→0
ε2Γψtε(α) = Γψt0(α), (2.10)

P ε
α − lim

ε→0
ε2γψtε(α) = γψt0(α), (2.11)

where the matrices Γψt0(α) and γ
ψ
t0(α) are defined as follows:

Γψt0(α) =

∫ t

0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ ds, (2.12)

γψt0(α) =

∫ t

0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ ds. (2.13)

Note that, by virtue of (2.4), (2.5) and ȧ ∈ Ψ, matrices given by (2.8),
(2.9), (2.12) and (2.13) are well defined.

Denote by Ψ0 the subset of Ψ such that for each ψ ∈ Ψ0 and α ∈ A,
rank Γψt0(α) = m and rank γψt0(α) = m.

Assume that ȧ ∈ Ψ0.
For each ψ ∈ Ψ0, define a P ε

α-square integrable martingale Lψ,εt (α) as
follows:

Lψ,εt (X;α) :=

∫ t

0

ψε(u,X;α)(dXu − aε(u,X;α)du). (2.14)

Now we give a definition of CULAN M -estimators.
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Definition 2.1. An estimator (αψ,εt )ε>0 = (αψ,ε1,t , . . . , α
ψ,ε
m,t)

′
ε>0, ψ ∈ Ψ0, is

called consistent uniformly linear asymptotically normal (CULAN) if it ad-
mits the following expansion:

αψ,εt = α + [γψt0(α)]
−1ε2Lψ,εt (α) + rψtε(α), (2.15)

where uniformly in α on each compact,

P ε
α − lim

ε→0
ε−1rψtε(α) = 0. (2.16)

It is well known (see Kutoyants [3]) that under the above conditions,
uniformly in α on each compact,

L{ε−1(αψ,εt − α) | P ε
α}

w→ N(0, Vt(ψ;α)),

with
Vt(ψ;α) := [γψt0(α)]

−1Γψt0(α)([γ
ψ
t0(α)]

−1)′, (2.17)

where L(ζ | P ) denotes the distribution of random vector ζ, calculated un-
der measure P , symbol “

w→” denotes the weak convergence of measures,
N(0, Vt(ψ;α)) is a distribution of Gaussian vector with zero mean and co-
variance matrix Vt(ψ;α).

Remark 2.1. In context of diffusion type processes, theM -estimator (αψ,εt )ε>0

is defined as a solution of the following stochastic equation:

Lψ,εt (X;α) = 0,

where Lψ,εt (X;α) is defined by (2.14), ψ ∈ Ψ0.

The asymptotic theory ofM -estimators for general statistical models with
filtration is developed in Toronjadze [4]. Namely, the problem of existence
and global asymptotic behaviour of solutions is studied. In particular, the
conditions of regularity and ergodicity type are established under which M -
estimators have a CULAN property.

For our model, in case whenA = Rm, the sufficient conditions for CULAN
property take the form:

(1) for all s, 0 ≤ s ≤ t, and x ∈ Ct, the functionals ψ(s, x;α) and ȧ(s, x;α)
are twice continuously differentiable in α with bounded derivatives satisfying
the functional Lipshitz conditions with constants, which do not depend on α.
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(2) the equation (w.r.t. y)

∆t(α, y) :=

∫ t

0

ψ(s, Y 0(α); y)(a(s, Y 0(α);α)− a(s, Y 0(α); y)) ds = 0

has a unique solution y = α.
The MLE is a special case of M -estimators when ψ = ȧ.

Remark 2.2. According to (2.7), the asymptotic covariance matrix of MLE
(âεt)ε>0 is [I0t (α)]

−1. By the usual technique one can show that for each
α ∈ A and ψ ∈ Ψ0, [I

0
t (α)]

−1 ≤ Vt(ψ;α), see (2.17), where for two symmetric
matrices B and C the relation B ≤ C means that the matrix C − B is
nonnegative definite.

Thus, the MLE has a minimal covariance matrix among allM -estimators.

2.2 Shrinking contamination neighborhoods

In this subsection, we give a notion of a contamination of the basic model
(2.3), described in terms of shrinking neighborhoods of basic measures {P ε

α,
α ∈ A, ε > 0}, which is an analog of the Huber gross error model (see, e.g.,
Hampel et al. [5] and, also, Remark 2.3 below).

Let H be a family of bounded nonanticipative functional h : [0, t]× Ct ×
A → R1 such that for all s ∈ [0, t] and α ∈ A, the functional h(s, x;α) is
continuous at the point x0 = Y 0(α).

Let for each h ∈ H, α ∈ A and ε > 0, P ε,h
α be a measure on (Ct,Bt) such

that

1) P ε,h
α ∼ P ε

α,

2)
dP ε,h

α

dP ε
α

= Et(εN ε,h
α ) (2.18)

where

3) N ε,h
α,s :=

∫ s

0

hε(u,X;α)(dXu − aε(u,X;α)du), (2.19)

with hε(s, x;α) :=
1
ε
h(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct.

Denote by Pε,H
α a class of measures P ε,h

α , h ∈ H, that is,

Pε,H
α = {P ε,h

α ; h ∈ H}.
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We call (Pε,H
α )ε>0 a shrinking contamination neighborhoods of the basic mea-

sures (P ε
α)ε>0, and the element (P ε,h

α )ε>0 of these neighborhoods are called
alternative measures (or, simply, alternative).

Obviously, for each h ∈ H and α ∈ A, the process N ε,h
α = (N ε,h

α,s)0≤s≤t
defined by (2.19) is a P ε

α-square integrable martingale. Since under measure
P ε
α the process w = (ws)0≤s≤t defined as

ws := Xs −
∫ s

0

aε(u,X;α) du, 0 ≤ s ≤ t,

is a Wiener process, by virtue of the Girsanov Theorem the process w̃ :=
w + ⟨w, εN ε,h

α ⟩ is a Wiener process under changed measure P ε,h
α . But by the

definition,

w̃s = Xs −
∫ s

0

(aε(u,X;α) + εhε(u;X;α)) du,

and hence one can conclude that P ε,h
α is a weak solution of SDE

dXs = (aε(s,X;α) + εhε(s,X;α))ds+ dws, X0 = 0.

This SDE can be viewed as a “small” perturbation of the basic model
(2.3).

Remark 2.3. 1) In the case of i.i.d. observations X1, X2, . . . , Xn, n ≥ 1, the
Huber gross error model in shrinking setting is defined as follows:

fn,h(x;α) := (1− εn)f(x;α) + εnh(x;α),

where f(x, α) is a basic (core) density of distribution of r.v. Xi (w.r.t. some
dominating measure µ), h(x, α) is a contaminating density, fn,h(x;α) is a
contaminated density, εn = O(n−1/2). If we denote by P n

α and P n,h
α the

measures on (Rn,B(Rn)), generated by f(x;α) and fn,h(x;α), respectively,
then

dP n,h
α

dP n
α

=
n∏
i=1

fn,h(Xi;α)

f(Xi;α)
=

n∏
i=1

(1 + εnH(Xi;α)) = En(εn ·Nn,h
α ),

where H = h−f
f
, Nn,h

α = (Nn,h
α,m)1≤m≤n, N

n,h
α,m =

∑m
i=1H(Xi;α), N

n,h
α is a

P n
α -martingale, En(εnNn,h

α ) =
∏n

i=1(1 + εn∆N
n,h
α,i ) is the Dolean exponential

in discrete time case.
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Thus
dP n,h

α

dP n
α

= En(εn ·Nn,n
α ) (2.20)

and the relation (2.18) is a direct analog of (2.20).
2) The concept of shrinking contamination neighborhoods, expressed in

the form of (2.18), was proposed in Lazrieva and Toronjadze [1] for more gen-
eral situation, concerning with the contamination areas for semimartingale
statistical models with filtration.

In the remainder of this subsection, we study the asymptotic properties
of CULAN estimators under alternatives.

For this aim, we first consider the problem of contiguity of measures
(P ε,h

α )ε>0 to (P ε
α)ε>0.

Let (εn)n≥1, εn ↓ 0, and (αn)n≥1, αn ∈ K, K ⊂ A is a compact, be
arbitrary sequences.

Proposition 2.1. For each h ∈ H, the sequence of measures (P εn,h
αn

) is
contiguous to sequence of measures (P εn

αn
), i.e.,

(P εn,h
αn

) ◁ (P εn
αn
).

Proof. From the predictable criteria of contiguity (see, e.g., Jacod and Shiryaev
[6]), it follows that we have to verify the relation

lim
N→∞

lim sup
n→∞

P εn,h
αn

{
hnt

(1
2

)
> N

}
= 0, (2.21)

where hnt (
1
2
) = (hns (

1
2
))o≤s≤t is the Hellinger process of order 1

2
.

By the definition of Hellinger process (see, e.g., Jacod and Shiryaev [6]),
we have

hnt

(1
2

)
= hnt

(1
2
, P εn,h

αn
, P εn

αn

)
=

1

8

∫ t

0

[h(s, εnX;αn)]
2ds,

and since h ∈ H, and hence is bounded, hnt (
1
2
) is bounded too, which provides

(2.21).

Proposition 2.2. For each estimator (αε,ψt )ε>0 with ψ ∈ Ψ0 and each alter-
native (P ε,h

α )ε>0 ∈ (Pε,h
α )ε>0, the following relation holds true:

L{ε−1(αψ,εt − α) | P ε,h
α } w→ N([γψt0(α)]

−1bt(ψ, h;α), Vt(ψ;α)),

where

bt(ψ, h;α) :=

∫ t

0

ψ(s, Y 0(α);α)h(s, Y 0(α);α) ds.
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Proof. Proposition 2.1 together with (2.16) provides that uniformly in α on
each compact,

P ε,h
α − lim

ε→0
ε−1rψtε(α) = 0,

and therefore we have to establish the limit distribution of random vector
[γψt0(α)]

−1εLψ,εt under the measures (P ε,h
α )ε>0.

By virtue of the Girsanov Theorem, the process Lψ,εt (α) = (Lψ,εs (α))0≤s≤t
is a semimartingale with canonical decomposition

Lψ,εs (α) = L̃ψ,εs (α) + bε,s(ψ, h;α), 0 ≤ s ≤ t, (2.22)

where L̃ψ,εt (α) = (L̃ψ,εs (α))0≤s≤t is a P
ε,h
α -square integrable martingale, defined

as follows:

L̃ψ,εs (X;α) :=

∫ s

0

ψε(u,X;α)(dXu − (aε(u,X;α) + εhε(u,X;α))du),

and

bε,s(ψ, h;α) := ε

∫ s

0

ψε(u,X;α)hε(u,X;α) du.

But ⟨L̃ψ,ε(α)⟩t = Γψtε(α), where Γψtε(α) is defined by (2.8). On the other
hand, from Proposition 2.1 and (2.10) it follows that

P ε,h
α − lim

ε→0
⟨εL̃ψ,ε(α)⟩t = P ε,h

α − lim
ε→0

ε2Γψtε(α) = P ε
α − lim

ε→0
ε2Γψtε(α) = Γψt0(α)

uniformly in α on each compact, and hence

L{([γψt0(α)]−1εL̃ψ,εt | P ε,h
α } w→ N(0, Vt(ψ;α)). (2.23)

Finally, relation (2.23) together with (2.22) and relation

P ε,h
θ − lim

ε→0
εbε,t(ψ, h;α) =

∫ t

0

ψ(s, Y 0(α);α)h(s, Y 0(α);α)ds = bt(ψ, h;α)

provides the desirable result.

2.3 Optimization criteria. Construction of optimal B-
robust estimators

In this subsection, we state and solve an optimization problem, which results
in construction of optimal B-robust estimator.
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Initially, it should be stressed that the bias vector b̃t(ψ, h;α) := [γψt0(α)]
−1

bt(ψ, h;α) can be viewed as the influence functional of the estimator (αψ,εt )ε>0

w.r.t. alternative (Pψ,h
α )ε>0.

Indeed, the expansion (2.15) together with (2.22) and (2.23) allows to
conclude that

L{ε−1(aψ,εt − α− ε2[γψt0(α)]
−1bεt(ψ, h;α)) | P ε,h

α } w→ N(0, Vt(ψ;α)),

and hence, the expression

α + ε2[γψt0(α)]
−1bεt(ψ, h;α)− α = ε2[γψt0(ε)]

−1bεt(ψ, h;α)

plays the role of bias on the “fixed step ε” and it seems natural to interpret
the limit

P ε,h
α − lim

ε→0

α + ε2[γψt0(α)]
−1bεt(ψ, h;α)− α

ε
= [γψt0(ε)]

−1bεt(ψ, h;α)

as the influence functional.
For each estimator (aψ,εt )ε>0, ψ ∈ Ψ0, defined the risk functional w.r.t.

alternative (P ε,h
α )ε>0, h ∈ H, as follows:

Dt(ψ, h;α) = lim
a→∞

lim
ε→0

Eε,h
α ((ε−2|αψ,εt − α|2) ∧ a),

where x ∧ a = min(x, a), a > 0, Eε,h
α is an expectation w.r.t. measures P ε,h

α .
Using Proposition 2.2 it is not hard to verify that

Dt(ψ, h;α) = |̃bt(ψ, h;α)|2 + trVt(ψ;α),

where trA denotes the trace of matrix A.
Connect with each ψ ∈ Ψ0 the function ψ̃ as follows:

ψ̃(t, x;α) = [γψt0(α)]
−1ψ(t, x;α).

Then ψ̃ ∈ Ψ0 and

γψ̃t0(α) = Id,

where Id is a unit matrix,

Vt(ψ;α) = Vt(ψ̃;α) = Γψ̃t0(α), b̃t(ψ, h;α) = b̃t(ψ̃, h;α) = bt(ψ̃, h;α).
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Therefore

Dt(ψ, h;α) = Dt(ψ̃, h;α) = |bt(ψ̃, h;α)|2 + tr Γψ̃t0(α). (2.24)

Denote by Hr a set of functions h ∈ H such that for each α ∈ A,∫ t

0

|h(x, Y 0(α);α)| ds ≤ r,

where r, r > 0, is a constant.
Since, for each r > 0,

sup
h∈Hr

|bt(ψ̃, h;α)| ≤ const.(r) sup
0≤s≤t

|ψ̃t(s, Y 0(α);α)|,

where constant depends on r, we call the function ψ̃ an influence function of
estimator (αψ,εt )ε>0 and a quantity

γ∗tψ(α) = sup
0≤s≤t

|ψ̃(s, Y 0(α);α)|

is named as the (unstandardized) gross error sensitivity at point α of esti-
mator (αψ,εt )ε>0.

Define

Ψ0,c =

{
ψ ∈ Ψ0 :

∫ t

0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds = Id, (2.25)

γ∗tψ(α) ≤ c

}
, (2.26)

where c ∈ [0,∞) is a generic constant.
Taking into account the expression (2.24) for the risk functions, we come

to the following optimization problem, known in robust estimation theory
as Hampel’s optimization problem: minimize the trace of the asymptotic
covariance matrix of estimator (αψ,εt )ε>0 over the class Ψ0,c, that is,

minimize

∫ t

0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ds (2.27)

under the side conditions (2.25) and (2.26).
Define the Huber function hc(z), z ∈ Rm, c > 0, as follows:

hc(z) := zmin
(
1,

c

|z|

)
.

For arbitrary nondegenerate matrix A denote ψAc = hc(Aa).

12



Theorem 2.1. Assume that for given constant c there exists a nondegenerate
m×m matrix A∗

c(α), which solves the equation (w.r.t. matrix A)∫ t

0

ψAc (s, Y
0(α);α)[ȧ(s, Y 0(α)α)]′ds = Id. (2.28)

Then the function ψ
A∗

c(α)
c = hc(A

∗
c(α)ȧ) solves the optimization problem (2.27).

Proof. (See, e.g., Hampel et al. [5].)
Let A be an arbitrary m×m matrix.
Since for each ψ ∈ Ψ0,

∫
ψ(ȧ)′ = Id,

∫
ȧ[ȧ]′ = I0(α) (see (2.7)) and the

trace is an additive functional, we have∫
(ψ − Aȧ)(ψ − Aȧ)′ =

∫
ψψ′ − A− A′ + AI0(α)A′

(here and below we use simple evident notations for integrals).
Therefore instead of minimizing of tr

∫
ψψ′ we can minimize

tr

∫
(ψ − Aȧ)(ψ − Aȧ)′ =

∫
|ψ − Aȧ|2,

and it is evident that a function hc(Aȧ) minimizes the expression under
integral sign, and hence the integral itself over all functions ψ ∈ Ψ0, satisfying
(2.26).

At the same time, the condition (2.25), generally speaking, can be vio-
lated. But, since a matrix A is arbitrary, we can choose A = A∗

c(α) from

(2.28) which guarantees the validity of (2.25) with ψ∗
c = ψ

A∗
c(α)

c .

As we have seen, the resulting optimal influence function ψ∗
c is defined

along the process Y 0(α) = (Y 0
s (α))0≤s≤t, which is a solution of equation (2.2).

But for constructing optimal estimator we need a function ψ∗
c (s, x;α),

defined on whole space [0, t]× Ct ×A.
For this purpose, define ψ∗

c (s, x;α) as follows:

ψ∗
c (s, x;α) = ψA

∗
c(α)

c (s, x;α) = hc(A
∗
c(α)ȧ(s, x;α)), (2.29)

and as usual ψ∗
c,ε =

1
ε
ψ∗
c (s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.

Definition 2.2. We say that ψ∗
c (s, x;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A, is an

influence function of optimal B-robust estimator (α∗,ε
t )ε>0 = (α

ψ∗
c ,ε

t )ε>0 over
the class of CULAN estimators (αψ,εt )ε>0, ψ ∈ Ψ0,c, if the matrix A∗(α) is
differentiable in α.

13



From (2.9), (2.11), (2.28) and (2.29) it directly follows that

γ
ψ∗
c

t0 (α) = P ε
α − lim

ε→0
ε2γ

ψ∗
c

tε (α) =

∫ t

0

ψ∗
c (s, Y

0(α);α)(ȧ(s, Y 0(α);α))′ds = Id.

Besides, for each alternative (P ε,h
α )ε>0, h ∈ H, according to Proposition 2.2,

we have

L{ε−1(α∗,ε
t − α) | P ε,h

α } w→ N(bt(ψ
∗
c , h;α), Vt(ψ

∗
c ;α)) as ε→ 0,

where

bt(ψ
∗
c , h;α) =

∫ t

0

ψ∗
c (s, Y

0(α);α)h(s, Y 0(α);α)ds,

and Vt(ψ
∗
c ;α) = Γ

ψ∗
c

t0 (α).
Hence, the risk functional for estimator (α∗,ε

t )ε>0 is

Dt(ψ
∗
c , h;α) = |bt(ψ∗

c , h;α)|2 + tr Γ
ψ∗
c

t0 , h ∈ H,

and the (unstandardized) gross error sensitivity of (α∗,ε
t )ε>0 is

γψ∗
c
(α) = sup

0≤s≤t
|ψ∗
c (s, Y

0(α);α)| ≤ c.

Thus, we may conclude that (α∗,ε
t )ε>0 is the optimal B-robust estimator over

the class of estimators (αψ,εt )ε>0, ψ ∈ Ψ0,c, in the following sense: the trace
of asymptotic covariance matrix of (α∗,ε

t )ε>0 is minimal among all estimators
(αψ,εt )ε>0 with bounded by constant c gross error sensitivity, that is,

Γ
ψ∗
c

t0 (α) ≤ Γψt0(α) for all ψ ∈ Ψ0,c.

Note that for each estimator (αψ,εt )ε>0 and alternatives (P ε,h
α )ε>0, h ∈ H,

the influence functional is bounded by const.(r) · c. Indeed, we have for
ψ ∈ Ψ0,c,

sup
h∈Hr

|bt(ψ, h;α)| ≤ const.(r) · c := C(r; c),

and since from (2.24)

inf
ψ∈Ψ0,c

sup
h∈Hr

Dt(ψ, h;α) ≤ C2(r; c) + tr Γ
ψ∗
c

t0 (α),

we can choose “optimal level” of truncation, minimizing the expression

C2(r; c) + tr Γ
ψ∗
c

t0 (α)
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over all constants c, for which the equation (2.28) has a solution A∗
c(α). This

can be done using the numerical methods.
For the problem of existence and uniqueness of solution of equation (2.28),

we address to Rieder [7].
In the case of one-dimensional parameter α (i.e., m = 1), the optimal

level c∗ of truncation is given as a unique solution of the following equation
(see Lazrieva and Toronjadze [1])

r2c2 =

∫ t

0

[ȧ(s, Y 0(α);α)]c−c ȧ(s, Y
0(α);α)ds−

∫ t

0

([ȧ(s, Y 0(α);α)]c−c)
2ds,

where [x]ba = (x ∧ b) ∨ a and the resulting function

ψ∗(s, x;α) = [ȧ(s, x;α)]c−c, 0 ≤ s ≤ t, x ∈ Ct,

is (Ψ0,Hr) optimal in the following minimax sense:

sup
h∈Hr

Dt(ψ
∗, h;α) = inf

ψ∈Ψ
sup
h∈Hr

Dt(ψ, h;α).

Appendix

Important feature of the stochastic volatility model is that volatility process
Y is unobservable (latent) process. Clear that full knowledge of the model
of the process Y is necessary and hence one needs to estimate the unknown
parameter α = (α1, . . . , αm), m ≥ 1.

A variety of estimation procedures are used, which involve either direct
statistical analysis of the historical data or the use of implied volatilities
extracted from prices of existing traded derivatives.

Consider the method based on historical data.
Fix the time variable t. From observations Y

t
(n)
0
, . . . , Y

t
(n)
n
, 0 = t

(n)
0 <

· · · < t
(n)
n = t, max

j
[t
(n)
j+1 − t

(n)
j ] → 0 as n → 0, calculate the realization of

yield process Rt =
∫ t
0
dYs
Ys

, and then calculate the sum

Sn(t) =
n−1∑
j=0

∣∣R
t
(n)
j+1

−R
t
(n)
j

∣∣2.
It is well known (see, e.g., Lipster and Shiryaev [2]) that

Sn(t)
P→

∫ t

0

σ2
s ds as n→ ∞.
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Since σ2
t (ω) = f(Yt) is a continuous process, we get

σ2
t (ω) = lim

∆↓0

F (t+∆, ω)− F (t, ω)

∆
,

where F (t, ω) =
∫ t
0
σ2
s(ω) ds.

Hence, the realization (yt)0≤t≤T of the process Y can be found by the
formula yt = f−1(σ2

t ), 0 ≤ t ≤ T .
We can use the reconstructed sample path (yt), 0 ≤ t ≤ T , to estimate

the unknown parameter α in the drift coefficient of diffusion process Y .
The second market price adjusted procedure of reconstruction the sample

path of volatility process Y and parameter estimate was suggested by Renault
and Touzi [8], where they used implied volatility data.

We present a quick review of this method, adapted to our model (1.1).
Suppose that the volatility risk premium λσ ≡ 0, meaning that the risk

from the volatility process is non-compensated (or can be diversified away).
Then the price Ct(σ) of European call option can be calculated by Hull and
White formula (see, e.g., Renault and Touzi [8]), and Black–Scholes (BS)
implied volatility σi(σ) can be found as an unique solution of the equation

Ct(σ) = CBS
t (σi(σ)),

where CBS(σ) denotes the standard BS formula, written as a function of the
volatility parameter σ.

Here (for further estimational purposes) only at-the-money options are
used.

Under some technical assumptions (see Proposition 5.1 of Renault and
Touzi [8]),

∂σit(σ, α)

∂σt
> 0 (2.30)

(remember that the drift coefficient of process Y depends on unknown pa-
rameter α).

Fix current value of time parameter t, 0 ≤ t ≤ T , and let 0 < T1 < T2 <
· · · < Tk−1 < t < Tk be the maturity times of some traded at-the-money
options.

Let σi
∗
tεj

be the observations of an implied volatility at the time moments

0 = tε0 < tε1 < · · · < t[ t
ε
] = t, max

j
[tεj+1 − tεj ] → 0 as ε→ 0.
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Then, using (2.30) and solving the equation

σitεj (σt
ε
j
, α) = σi

∗

tεj
,

one can obtain the realization {σ̃tεj} of the volatility (σt), and thus, using the

formula ytεj = f−1(σ̃2
tεj
), the realization {ytεj} of volatility process (Yt), which

can be viewed as the realization of nonlinear AR(1) process:

Ytεj+1
− Ytεj = a(tεj , Ytεj ;α)(t

ε
j+1 − tεj) + ε(wσtεj+1

− wσtεj ).

Using the data {ytεj} one can construct the MLE α̂εt of parameter α, see,

e.g., Chitashvili et al. [9].
(Remember the scheme of construction of MLE. Rewrite the previous

AR(1) process, using obvious simple notations, in form

Yj+1 − Yj = a(tj, Yj;α)∆ + ε∆wσj .

Then

∂

∂y
P{Yj+1 ≤ y | Yj} =

1√
2π∆ε

exp

(
− (y − Yj − a(tj, Yj;α)∆)2

2ε2∆

)
=: φj+1(y, Yj;α),

and the “likelihood” process ℓt = (ℓ
(1)
t , . . . , ℓ

(m)
t ) is given by the relation

ℓ
(i)
t =

∑
j

ℓ
(i)
j+1, i = 1,m,

where

ℓ
(i)
j+1(y;α) =

∂

∂αi
lnφj+1(y, Yj;α)

=
1

ε2∆

(
y − Yj − a(tj, Yj;α)∆

)
ȧ(i)(tj, Yj;α)∆.

Hence MLE is a solution (under some conditions) of the system of equations

1

ε2∆

∑
j

(
yj+1 − yj − a(tj, yj;α)∆

)
ȧ(i)(tj, yj;α)∆ = 0, i = 1,m,

where the reconstructed data {yj} = {ytεj} are substituted.)

17



Let us introduce the functionals

HW−1
ε : α̂εt (p) →

(
y
(p+1)
tεj

, 0 ≤ j ≤
[ t
ε

])
,

MLEε :
(
y
(p+1)
tεj

, 0 ≤ j ≤
[ t
ε

])
→ α̂εt (p+ 1),

and
ϕε =MLEε ◦HW−1

ε .

Starting with some constant initial value (or preliminary estimator ob-
tained, e.g., from historical data), one can compute a sequence of estimators

α̂εt (p+ 1) = ϕε(α̂
ε
t (p)), p ≥ 1.

If the operator ϕε is a strong contraction in the neighborhood of the true
value of the parameter, α0, for a small enough ε, then one can define the es-
timator α̂εt as the limit of the sequence {α̂εt (p)}p≥1 which is a strong consistent
estimator of the parameter α.
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