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1 Introduction

We shall use stochastic exponentials and Backward Stochastic Differential
Equation (BSDE) approach to generalize the fish growth deterministic model
of von Bertalanffy [4], which is most commonly used as a descriptive model
of size-at age data.

The von Bertalanffy model, which is written for the case of decreasing
growth with age is a differential equation with a linearly decreasing growth
rate, or

dL

dt
= K(L∞ − Lt), L∞ > 0 K > 0, (1)

1

DOI 10.62232/barp.8.2023.7432

https://barp.openjournals.ge/index.php/barp/article/view/7432


with initial condition L(t0) = L0. The solution to differential equation (1) is

Lt = L∞[1− e−K(t−t0)] + L0e
−K(t−t0), (2)

where
L∞ - is the upper bound for the variable under study, that can only be

reached after infinity time,
K - is the curvature parameter, or von Bertalanffy growth rate, that

determines the speed with which the fish attains L∞.
t0 - determines the time at which the fish has a size equal to zero and

could be negative.
For simplicity we assume that L0 = 0 and t0 = 0 which means that an

individual would have been of length 0 at age 0. This results in the ”LVB”
growth model

Lt = L∞[1− e−Kt]. (3)

Several stochastic growth models are available in the literature. Some
individual-based stochastic models of growth (see, e.g., [1], [2] ) are proposed
using stochastic differential equations of the type

Lt = L0 +

∫ t

0

a(s, Ls)ds+

∫ t

0

σ(s, Ls)dWs,

where Lt is the size at time t, a(t, Lt) characterizes the deterministic in-
trinsic growth of the individual, σ(t, Lt) gives the magnitude of the random
fluctuations and Wt is a Brownian Motion.

In Russo et al [3] the growth model of fish (and other animals) as a
solution of linear stochastic differential equation driven by a Levy process
with positive jumps (a subordinator) was proposed, the unique solution of
which is the stochastic exponential of the Levy process. This model admits a
certain number of desirable features and it is the first stochastic model with
increasing paths, giving more realistic stochastic model of individual growth.

The model proposed in Russo et al [3] is given by the process Yt, which
is obtained as the solution of the stochastic differential equation (SDE)

dYt = (L∞ − Yt−)dXt (4)

with initial condition L0 = 0, where Xt is a subordinator. Note that a
subordinator is a Levy process with increasing paths.
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If the process X cannot make jumps larger than 1 (which is natural to
assume in this context), then solution of this equation is

Lt = L∞(1− Et(−X)), (5)

where Et(−X) is the stochastic exponent of the process −X and the extreme
length L∞ is assumed to be a constant. Note that Lt defined by this model
is increasing process and it coincides with the von Bertalanffy growth curve
when X is a deterministic subordinator Xt = kt.

This approach (as all existing) has a drawback as a growth model, since
the asymptotic length of the fish is assumed to be a constant. This implies
that the variation of fish length tends to zero, which is not realistic, as it
would imply that all individuals should reach the same limiting size. In
order to overcome this problem it seems natural to assume that the extremal
size of a fish is itself a random variable, thus accounting for the individual
variability. Therefore, it is natural to use Backward SDE’s (instead of the
forward SDEs) with the random boundary condition at the end equal to the
asymptotic length of a fish.

To generalize the von Bertalanffy model when the extreme length L∞ is a
random variable, let first consider the simple case and only assume that L∞
is a bounded random variable measurable with respect to FW

∞ = ∨t≥0FW
t ,

where W is a Brownian Motion and (FW
t , t ≥ 0) is the filtration generated

by W .
We write this model as a solution of the Backward Stochastic Differential

equation (BSDE)

Yt =

∫ t

0

Ys
Ke−Ks

1− e−Ks
ds+

∫ t

0

ZsdWs, (6)

with the boundary condition

Y∞ = lim
t→∞

Yt = L∞. (7)

The solution process to equation (6)-(7) is

Lt = E(L∞|FW
t )[1− e−Kt]. (8)

More exactly the solution of (6)-(7) is a pair (Yt, Zt)

Yt = Lt, Zt = ϕt(1− e−Kt),
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where Lt is defined by (8) and ϕt is the integrand from the integral repre-
sentation of the martingale

E(L∞|FW
t ) = EL∞ +

∫ t

0

ϕsdWs,

which can be immediately verified by the integration by part formula.
Note that, since (8) implies

ELt = EL∞[1− e−Kt],

the expectation of Lt follows the Von Bertalanffy-type pattern with L∞ re-
placed by EL∞.

Remark that, if in (8) instead of exponential distribution function 1−e−Kt
we shall take general continuous distribution function G(t), then the process
Lt = E(L∞|FW

t )G(t) will satisfy the BSDE

Yt =

∫ t

0

Ys
G(s)

dG(s) +

∫ t

0

ZsdWs, (9)

with the same boundary condition (7).
We shall generalize expression (5) (see Theorem 1) assuming that L∞

is a random variable and consider this variable as a boundary condition at
infinity of a BSDE for Lt driven by a subordinator X and a Brownian Motion
W , independent of X. The linear BSDEs derived in the paper differ from
classical cases by considering not integrable coefficients on the infinite time
interval. Under additional assumption that the extreme size L∞ of a fish is a
random variable measurable with respect to the σ-algebra FW

∞ generated by
the Brownian Motion W , i.e., when two sources of randomness, the random
individual variability (related with L∞) and the environmental randomness
(related with the process Xt), are independent, the BSDE takes simpler and
more natural form (see Corollary 1).

2 The main results.

Let X = (Xt, t ≥ 0) be a Levy process with affine process αt, α > 0,
with zero Brownian part and with positive jumps (a subordinator). Let
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W = (Wt, t ≥ 0) be a Brownian Motion. Suppose that X and W are
independent processes defined on a complete probability space (Ω,F , P ) with
filtration F = (Ft, t ≥ 0) generated by W and X and let

F∞ = ∨t≥0Ft.

Suppose that in the model (3) or (5) L∞ is an integrable F∞-measurable
random variable. Then Lt should be a random process and if we assume that
the process Lt is adapted with respect to the filtration Ft, from (5) we obtain
that

Lt = E(L∞|Ft)[1− Et(−X)]. (10)

Let consider the growth model given by expression (10) and let’s see what
equation this process satisfies.

Let µ be the measure of jumps of the process X and let µ̃ be its compen-
sator. Note that in our case the compensator is of the form

µ̃(ds, dx) = ν(dx)ds,

where ν(dx) is the Levy measure on R+ =]0,∞[ with
∫
R+

(1∧x2)ν(dx) <∞.
We recall that the Levy process is a cadlag process with stationary inde-

pendent increaments, hence all jumps of X are totally inaccesible.
Denote by H the expression

H(s, x) =
xEs−(−X)

1 + (x− 1)Es−(−X)
.

Let consider the following linear BSDE (backward stochastic differential
equation)

Yt =

∫ t

0

∫
R+

(Ys +K(s, x))H(s, x)ν(dx)ds+ α

∫ t

0

Ys
Es−(−X)

1− Es−(−X)
ds+

+

∫ t

0

∫
R+

K(s, x)(µ− µ̃)(dx, ds) +

∫ t

0

ZsdWs, (11)

with the boundary condition

Y∞ = lim
t→∞

Yt = L∞. (12)
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Definition. Let V be the class of cadlag processes (Yt, t ≥ 0), such that
the family of random variables (Yτ , τ ∈ T ) is uniformly integrable, where T
is the set of stopping times.

Theorem 1. Let X be a Levy process with increasing paths (a subor-
dinator) and let ∆Xt < 1 for all t ≥ 0. Assume that L∞ is an integrable
F∞-measurable random variable.

Then the process

Lt = E(L∞|Ft)[1− Et(−X)] t ≥ 0 (13)

is the unique solution of the BSDE (11)-(12) in the class V .
Proof. The boundary condition follows from the Levy theorem, since

limt→∞ Et(−X) = 0 and

lim
t→∞

Lt = lim
t→∞

E(L∞|Ft) lim
t→∞

(1− Et(−X)) = L∞.

It follows from (13) that the process Lt is a special semimartingale and let

Lt = At +Mt, A0 = 0,M0 = 0 (14)

be the canonical decomposition, where A is the predictable process of finite
variation and M is a local martingale, which by the integral representation
property can be expressed as

Mt =

∫ t

0

∫
R+

K(s, x)(µ− µ̃)dxds+

∫ t

0

ZsdWs (15)

for some predictable Z and K with∫ t

0

Z2
sds <∞,

∫ t

0

∫
R+

K2(s, x)ν(dx)ds <∞ a.s.

First note that, since ∆Et(−X) = −Et−(−X)∆Xt, we have for any 0 <
r < t

1

1− Et(−X)
− 1

1− Er(−X)
=

=
∑
r<s≤t

(
1

1− Es−(−X)
− 1

1− Es−(−X)

)
−
∫ t

r

αEs(−X)

(1− Es(−X))2
ds =
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= −
∑
r<s≤t

Es−(−X)∆Xs(
1− Es−(−X)

)(
1− Es−(−X) + Es−(−X)∆Xs

)−∫ t

r

αEs(−X)

(1− Es(−X))2
ds =

= −
∫ t

r

∫
R+

Es−(−X)x(
1− Es−(−X)

)(
1− Es−(−X) + Es−(−X)x

)µ(dxds)−
∫ t

r

αEs(−X)

(1− Es(−X))2
ds

= −
∫ t

r

∫
R+

H(s, x)

1− Es−(−X)
µ(ds, dx)−

∫ t

r

αEs(−X)

(1− Es(−X))2
ds. (16)

By the Itô formula and (16) for any r > 0

Lt
1− Et(−X)

− Lr
1− Er(−X)

= (17)

=

∫ t

r

1

1− Es−(−X)
dAs +

∫ t

r

1

1− Es−(−X)
dMs+

+

∫ t

r

Ls−d(1− Es−(−X))−1) + [L, (1− E(−X))−1]t − [L, (1− E(−X))−1]r =

=

∫ t

r

1

1− Es−(−X)
dAs +

∫ t

r

1

1− Es−(−X)
dMs −

∫ t

r

αLsEs−(−X)

(1− Es−(−X))2
ds

−
∫ t

r

∫
R+

Ls−
H(s, x)

1− Es−(−X)
µ(ds, dx)−

∫ t

r

∫
R+

K(s, x)
H(s, x)

1− Es−(−X)
µ(ds, dx)

−
∫ t

r

∫
R+

∆As
H(s, x)

1− Es−(−X)
µ(ds, dx).

Since A is predictable and all jumps of X are totally inaccessible∫ t

r

∫
R+

∆As
H(s, x)

1− Es−(−X)
µ(ds, dx) = 0

and if we isolate in (17) the martingale part, we obtain that

Lt
1− Et(−X)

− Lr
1− Er(−X)

= (18)

=

∫ t

r

1

1− Es−(−X)
dAs −

∫ t

r

αLsEs−(−X)

(1− Es−(−X))2
ds =

−
∫ t

r

∫
R+

(Ls +K(s, x))
H(s, x)

1− Es−(−X)
ν(dx)ds + local martingale.
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Since by (13) the left-hand side of (18) is a martingale on the interval
[r,∞] for any r > 0, the bounded variation part in (18) should be equal to
zero. Therefore,

At − Ar = α

∫ t

r

Ls
Es(−X)

1− Es−(−X)
ds+ (19)

+

∫ t

r

∫
R+

(Ls +K(s, x))H(s, x)ν(dx)ds

for any r > 0. Since A0 = 0 the process A is a cadlag process of finite
variation, passing to the limit as r tends to 0 we obtain from (19) that

At =

∫ t

0

∫
R+

(Ls +K(s, x))H(s, x)ν(dx)ds+ α

∫ t

0

Ls
Es(−X)

1− Es(−X)
ds (20)

which, together with (14)-(15), implies that Lt satisfies (11).
It is evident that L ∈ V , since

0 ≤ Lt ≤ E(L∞|Ft)

and the family (E(L∞|Fτ ), τ ∈ T )) is uniformly integrable.
The proof of the uniqueness. Let Yt be a solution of (11)-(12) from the

class V . Then it follows from (11) (after tedious application of the Itô for-
mula) that the process

Mt = Yt/(1− Et(−X)) (21)

is a local martingale. Since X is a subordinator and 0 ≤ ∆Xt < 1 for all
t ≥ 0 we have that

1

1− Et(−X)
=

1

1− e−αtΠs≤t(1−∆Xs)
≤ 1

1− e−αt
.

Therefore, from (21)

|Mt| ≤
|Yt|

1− e−αt
and since Y ∈ V , the process (Mt, t ≥ r) will be a uniformly integrable mar-
tingale for any r > 0. This implies that M = (Mt, t ≥ r) can be represented
as Mt = E(η|Ft) for some F measurable integrable random variable η, hence

Yt/(1− Et(−X)) = E(η|Ft), t ≥ r. (22)
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By the boundary condition (12) and the Levy theorem, passing to the limit
as t→∞ in (22) we obtain that

η = Y∞ = L∞,

which by arbitrariness of r > 0 and right-continuity of Y and Mt implies
that Yt = Lt = E(L∞|Ft)[1− Et(−X)] for any t ≥ 0.

Remark 1. If Xt is a deterministic subordinator, i.e. if Xt = αt, α > 0,
then equation (11) coincides with equation (6) from the introduction.

Remark 2. Note that in this model the solution Lt is no more an in-
creasing process, but the expectation ELt is an increasing function. Indeed,
from the Itô formula

Lt = E(L∞|FW
t )[1− Et(−X)] = (23)∫ t

0

E(L∞|Fs)Es−(−X)dXs + martingale.

Since X is a Levy process with positive jumps, Xt−EXt is a martingale
and EXt is increasing. Therefore, it follows from (23) that

ELt = E

∫ t

0

E(L∞|Fs)Es−(−X)dEXs =

∫ t

0

EL∞Es−(−X)dEXs,

which implies that ELt is an increasing function.

Now suppose that the extreme size L∞ is an integrable FW
∞ -measurable

random variable. So, we assume that two sources of randomness, the random
individual variability (related with L∞) and the environmental randomness
(related with the process Xt), are independent, which is natural to assume.

Under these conditions

E(L∞|Ft) = E(L∞|FW
t ),

Lt = E(L∞|FW
t )[1− Et(−X)]. (24)

and the BSDE for the process Lt will be essentially simpler.
Denote by m the average size of jump of the process X

m ≡
∫
R+

xν(dx).
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Since 0 < ∆Xt < 1, t ≥ 0 and ν(dx) is the Levy measure∫
R+

x2ν(dx) <∞,

hence m is finite.
Corollary 1. Let X be a Levy process with increasing paths and let

∆Xt < 1 for all t ≥ 0. Assume that L∞ is an integrable FW
∞ -measurable

random variable and the processes W and X are independent.
Then the process

Lt = E(L∞|FW
t )[1− Et(−X)] t ≥ 0

is the unique solution of the BSDE

Yt = (α +m)

∫ t

0

Ys
Es(−X)

(1− Es(−X))
ds+

∫ t

0

ZsdWs+

+

∫ t

0

∫
R+

K(s, x)(µ− µ̃)(dx, ds), (25)

with the boundary condition

Y∞ = lim
t→∞

Yt = L∞. (26)

Proof. It follows from (17), that the purely discontinuous martingale part
of the martingale Lt/1− Et(−X) is equal to∫ t

0

∫
R+

1

1− Es−(−X)
K(s, x)(µ−µ̃)(ds, dx)−

∫ t

0

∫
R+

Ls−
H(s, x)

1− Es−(−X)
(µ−µ̃)(ds, dx)

−
∫ t

0

∫
R+

K(s, x)
H(s, x)

1− Es−(−X)
(µ− µ̃)(ds, dx).

Since Lt/(1− Et(−X)) = E(L∞|FW
t ) is a continuous martingale, we have

that ν(dx)ds - a.e.

1

1− Es−(−X)
K(s, x)− Ls−

H(s, x)

1− Es−(−X)
−K(s, x)

H(s, x)

1− Es−(−X)
= 0.

This implies that

K(s, x) = Ls
H(s, x)

1−H(s, x)
, ν(dx)ds− a.e. (27)
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and substituting this expression in (20), we obtain that

At =

∫ t

0

∫
R+

Ls
H(s, x)

1−H(s, x)
ν(dx)ds+ α

∫ t

0

Ls
Es(−X)

1− Es(−X)
ds. (28)

By definition of H
H(s, x)

1−H(s, x)
=

xE(−X)

1− E(−X)
,

therefore

At =

∫ t

0

∫
R+

Ls
xEs(−X)

1− Es(−X)
ν(dx)ds+ α

∫ t

0

Ls
Es(−X)

1− Es(−X)
ds =

= (α +m)

∫ t

0

Ls
Es(−X)

1− Es(−X)
ds

which implies that Lt satisfies (25).
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