Construction of identifying and real M-estimators in general statistical model with filtration

T. Toronjadze ${ }^{1,2}$
${ }^{1}$ Georgian American University, Business School, 10 Merab Aleksidze Str., 0160, Tbilisi, Georgia;
${ }^{2}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Alekside II Lane, 0193 Tbilisi, Georgia

Abstract

General statistical model with filtration is considered. Identifying and real M-estimators are constructed. Namely, consistent, linear, asymptotically normal estimators are founded, which are basic class of estimators in robust statistics.

Key words and phrases: general statistical model with filtration, M-estimators, robust statistics.
MSC 2010: 62F12, 62F35.

A key part in robust estimation theory play the Huber M-estimators. In general, M-estimators may be viewed as follows.

Consider a sequence of filtered statistical models

$$
\begin{equation*}
\mathcal{E}=\left\{\left(\Omega^{n}, \mathcal{F}^{n}, F^{n}=\left(\mathcal{F}_{t}^{n}\right), 0 \leq t \leq T,\left(Q_{\theta}^{n}, \theta \in \Theta \subset R_{1}\right)\right)\right\}_{n \geq 1} \tag{1}
\end{equation*}
$$

where for each $n \geq 1$ and $\theta \neq \theta^{\prime}$, the probability measures Q_{θ}^{n} and $Q_{\theta^{\prime}}^{n}$ are equivalent, $Q_{\theta}^{n} \sim Q_{\theta^{\prime}}^{n}, \mathcal{F}^{n}=\mathcal{F}_{T}^{n}$ and $T>0$ is a number, σ-algebra \mathcal{F}_{n} is completed and filtration F^{n} satisfies the usual conditions w.r.t. Q_{θ}^{n} for some, and hence, for each θ.

Let for each $\theta \in \Theta$ and $n \geq 1$ the process $\left(L_{n}(\theta, t), 0 \leq t \leq T\right)$ be a local (square integrable) Q_{θ}^{n}-martingale.

Denote $L_{n}(\theta)=\left.L_{n}(\theta, t)\right|_{t=T}$ and consider stochastic equation (with respect to parameter θ)

$$
\begin{equation*}
L_{n}(\theta)=L_{n}(\theta, \omega)=0, \quad n \geq 1 \tag{2}
\end{equation*}
$$

A sequence $\left\{T_{n}(\omega), \omega \in \Omega^{n}\right\}_{n \geq 1}$ of \mathcal{F}^{n}-measurable roots of these equations (i.e., for each $n \geq 1, T_{n}(\omega)$ is a random variable defined on $\left(\Omega^{n}, \mathcal{F}^{n}\right)$ with values Θ, and such that

$$
\begin{equation*}
\left.L_{n}\left(T_{n}(\omega), \omega\right)=0\right) \tag{3}
\end{equation*}
$$

is called a generalized M-estimator.
Notice that the equality (3) may be satisfied only asymptotically (in some sense, see, e.g., Theorem 1 below).

The proof of assertions concerning the asymptotic behaviour of M-estimators as solutions of equation (2) is carried out in two steps: firstly, the asymptotic properties are established for the left-hand side of equation (2); secondly, the asymptotic properties of the estimators (considered as implicit functions) are obtained by linearization. In this way one may construct consistent, linear, asymptotically normal estimators, which are asymptotically equivalent of M-estimators (see, e.g., (15) below). Class of such estimators is a basic class of estimators in robust estimation theory (see, e.g., $[1,2,3]$).

1 Local limiting behaviour of roots

Given a sequence of statistical models (1), and let $\left\{c_{n}(\theta)\right\}_{n \geq 1}, c_{n}(\theta)>0$, $\theta \in \Theta$ be a normalizing deterministic sequence.

Consider the sequence of random variables $\left\{L_{n}(\theta)\right\}_{n \geq 1}=\left\{L_{n}(\theta, \omega), \omega \in\right.$ $\left.\Omega^{n}\right\}_{n \geq 1}$ depending on the parameter $\theta \in \Theta$.

Remark 1. We shall use the following abbreviation

$$
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} \xi_{n}=K
$$

where $\xi=\left\{\xi_{n}\right\}_{n \geq 1}$ is a sequence of random variables defined for each n on Ω^{n} and K is a real number, if $\forall \rho>0$,

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\omega \in \Omega^{n}:\left|\xi_{n}(\omega)-K\right|>\rho\right\}=0
$$

Theorem 1. Let the following conditions hold:
a) for each $\theta \in \Theta, \lim _{n \rightarrow \infty} c_{n}(\theta)=0$;
b) for each $n \geq 1$, the mapping $\theta \rightsquigarrow L_{n}(\theta)$ is continuously differentiable in θQ_{θ}^{n}-a.s., $\left(\dot{L}_{n}(\theta):=\frac{\partial}{\partial \theta} L_{n}(\theta)\right)$;
c) for each $\theta \in \Theta$, there exists a function $\Delta_{Q}(\theta, y), \theta, y \in \Theta$, such that

$$
\begin{equation*}
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} c_{n}^{2}(\theta) L_{n}(y)=\Delta_{Q}(\theta, y) \tag{4}
\end{equation*}
$$

and the equation

$$
\Delta_{Q}(\theta, y)=0
$$

with respect to the variable y has the unique solution $\theta^{*}=b^{Q}(\theta)$;
d) $Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} c_{n}^{2}(\theta) \dot{L}_{n}\left(\theta^{*}\right)=-\gamma_{Q}(\theta)$, where $\gamma_{Q}(\theta)$ is a positive number for each $\theta \in \Theta$;
e) $\lim _{r \rightarrow 0} \limsup _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\sup _{\left\{y:\left|y-\theta^{*}\right| \leq r\right\}} c_{n}^{2}(\theta)\left|\dot{L}_{n}(y)-\dot{L}_{n}\left(\theta^{*}\right)\right|>\rho\right\}=0$ for each $\rho>0$.

Then for each $\theta \in \Theta$ there exists a sequence of random variables $T=\left\{T_{n}\right\}_{n \geq 1}$ taking the values in Θ such that
I. $\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{L_{n}\left(T_{n}\right)=0\right\}=1$;
II. $Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} T_{n}=\theta^{*}$;
III. if $\left\{\widetilde{T}_{n}\right\}_{n \geq 1}$ is another sequence with properties I and II, then

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{T_{n}=\widetilde{T}_{n}\right\}=1
$$

If, in addition,
f) the sequence of distributions $\left\{\mathcal{L}\left\{c_{n}(\theta) L_{n}\left(\theta^{*}\right) \mid Q_{\theta}^{n}\right\}\right\}_{n \geq 1}$ weakly converges to a certain distribution Φ,
then
IV. (i) $\mathcal{L}\left\{\gamma_{Q}(\theta) c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right) \mid Q_{\theta}^{n}\right\} \xrightarrow{w} \Phi$,

$$
\text { (ii) } c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right)=\frac{c_{n}^{-1}(\theta) L_{n}\left(\theta^{*}\right)}{\gamma_{Q}(\theta)}+R_{n}(\theta), \quad R_{n}(\theta) \xrightarrow{Q_{\theta}^{n}} 0 \text {. }
$$

Proof. 1. By the Taylor formula we have

$$
L_{n}(y)=L_{n}\left(\theta^{*}\right)+\dot{L}_{n}\left(\theta^{*}\right)\left(y-\theta^{*}\right)+\left[\dot{L}_{n}(\bar{\theta})-\dot{L}_{n}\left(\theta^{*}\right)\right]\left(y-\theta^{*}\right),
$$

where $\bar{\theta}=\theta^{*}+\alpha\left(\theta^{*}\right)\left(y-\theta^{*}\right), \alpha\left(\theta^{*}\right) \in[0,1]$ and the point $\bar{\theta}$ is chosen so that $\bar{\theta} \in \mathcal{F}^{n}(\xi \in \mathcal{F}$ means that r.v. ξ is \mathcal{F}-measurable).

From this we get

$$
\begin{equation*}
c_{n}^{2}(\theta) L_{n}(y)=c_{n}^{2}(\theta) L_{n}\left(\theta^{*}\right)-\gamma_{Q}(\theta)\left(y-\theta^{*}\right)+\varepsilon_{n}\left(\bar{\theta}, \theta^{*}\right)\left(y-\theta^{*}\right), \tag{5}
\end{equation*}
$$

where $\varepsilon_{n}\left(y, \theta^{*}\right) \in \mathcal{F}^{n}$,

$$
\varepsilon_{n}\left(y, \theta^{*}\right)=c_{n}^{2}(\theta)\left[\dot{L}_{n}(y)-\dot{L}_{n}\left(\theta^{*}\right)\right]+\left[c_{n}^{2}(\theta) \dot{L}_{n}\left(\theta^{*}\right)+\gamma_{Q}(\theta)\right], \quad y \in \Theta
$$

Evidently, conditions d) and e) ensure that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \limsup _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\sup _{\left\{y:\left|y-\theta^{*}\right| \leq r\right\}}\left|\varepsilon_{n}\left(y, \theta^{*}\right)\right|>\rho\right\}=0 \tag{6}
\end{equation*}
$$

for each $\rho>0$.
2. We now show that there exists a family $\left\{\Omega_{\theta}(n, r): n \geq 1, r>0, \theta \in\right.$ $\Theta\}$ with properties

$$
\begin{aligned}
& \text { 1) } \Omega_{\theta}(n, r) \in \mathcal{F}^{n} \\
& \text { 2) } \lim _{r \rightarrow 0} \limsup _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\Omega_{\theta}(n, r)\right\}=1,
\end{aligned}
$$

and for any $r>0, n \geq 1$ and $\omega \in \Omega_{\theta}(n, r)$ the equation

$$
L_{n}(y)=0
$$

has the unique solution T_{n} in the segment $\left|y-\theta^{*}\right| \leq r$.
Expansion (5) yields

$$
\begin{equation*}
c_{n}^{2}(\theta) L_{n}\left(\theta^{*}+u\right) u=c_{n}^{2}(\theta) L_{n}\left(\theta^{*}\right) u-u^{2} \gamma_{Q}(\theta)+u^{2} \varepsilon_{n}\left(\bar{\theta}, \theta^{*}\right) . \tag{7}
\end{equation*}
$$

For any $\theta \in \Theta, n \geq 1$ and $r>0$ define

$$
\begin{aligned}
\Omega_{\theta}(n, r)=\left\{\omega \in \Omega^{n}:\right. & \left|c_{n}^{2}(\theta) L_{n}\left(\theta^{*}\right)\right| \leq \frac{\gamma_{Q}(\theta) r}{2} \\
& \left.\sup _{\left\{y:\left|y-\theta^{*}\right| \leq r\right\}}\left|\varepsilon_{n}\left(y, \theta^{*}\right)\right|<\frac{\gamma_{Q}(\theta)}{2}\right\} .
\end{aligned}
$$

Obviously, $\Omega_{\theta}(n, r) \in \mathcal{F}^{n}$. Hence, if $\omega \in \Omega_{\theta}(r, n)$, then from equality (7) we get $L_{n}\left(\theta^{*}+u\right) u<0$ for $|u|=r$.

Since the mapping $u \rightsquigarrow L_{n}\left(\theta^{*}+u\right)$ is continuous with respect to u, the equation $L_{n}\left(\theta^{*}+u\right)=0$ for $|u| \leq r$ has at least one solution $u_{n}\left(\theta^{*}\right)$ with $\left|u_{n}\left(\theta^{*}\right)\right| \leq r$.

It can be easily seen that if $\omega \in \Omega_{\theta}(n, r)$ and $|u| \leq r$, then $\dot{L}_{n}\left(\theta^{*}+u\right)<0$.
On the other hand, for $\omega \in \Omega_{\theta}(n, r)$ and $|u| \leq r$,

$$
\begin{aligned}
L_{n}\left(\theta^{*}+u, \omega\right) & -L_{n}\left(\theta^{*}+u_{n}(\theta), \omega\right) \\
& =\int_{0}^{1} \frac{\partial}{\partial \alpha}\left[L_{n}\left(\left(\theta^{*}+u_{n}\left(\theta^{*}\right)\right)+\alpha\left(u-u_{n}\left(\theta^{*}\right)\right), \omega\right)\right] d \alpha
\end{aligned}
$$

Consequently,

$$
L_{n}\left(\theta^{*}+u, \omega\right)=\int_{0}^{1} \dot{L}\left(\theta^{*}+u_{n}\left(\theta^{*}\right)+\alpha\left(u-u_{n}\left(\theta^{*}\right)\right), \omega\right)\left(u-u_{n}\left(\theta^{*}\right)\right) d \alpha
$$

and

$$
\begin{aligned}
& L_{n}\left(\theta^{*}+u, \omega\right)\left(u-u_{n}\left(\theta^{*}\right)\right) \\
& \quad=\int_{0}^{1} \dot{L}\left(\theta^{*}+u_{n}\left(\theta^{*}\right)+\alpha\left(u-u_{n}\left(\theta^{*}\right)\right), \omega\right)\left(u-u_{n}\left(\theta^{*}\right)\right)^{2} d \alpha<0
\end{aligned}
$$

provided $u \neq u_{n}\left(\theta^{*}\right)$. Hence $L_{n}\left(\theta^{*}+u, \omega\right) \neq 0$ for $|u| \leq r, u \neq u_{n}\left(\theta^{*}\right)$. By the construction of the set $\Omega_{\theta}(n, r)$ and due to conditions c), d) and e) it is easily seen that 2) is true as well.
3. Now we construct the sequence $T=\left\{T_{n}\right\}_{n \geq 1}$ with properties I, II and III. Define

$$
\Omega_{n}^{\theta}:=\bigcup_{k>0} \Omega_{\theta}\left(n, k^{-1}\right)
$$

Evidently, $\Omega_{n}^{\theta} \in \mathcal{F}^{n}$. Let $\omega \in \Omega_{n}^{\theta}$. Then from the previous statement it follows that there exists a number $k(\omega)>0$ such that the equation $L_{n}(y)=0$ has the unique solution $\widetilde{T}_{n}(\omega)$ in the segment $\left|y-\theta^{*}\right| \leq(k(\omega))^{-1}$ with the mapping $\omega \rightsquigarrow \widetilde{T}_{n}(\omega)$ which is $\Omega_{n}^{\theta} \cap \mathcal{F}^{n}$-measurable.

Put

$$
T_{n}(\omega)= \begin{cases}\widetilde{T}_{n}(\omega) & \text { if } \omega \in \Omega_{n}^{\theta} \\ \theta_{0} & \text { if } \omega \neq \Omega_{n}^{\theta}\end{cases}
$$

where θ_{0} is a point in Θ.

It is easily seen that, by construction, T_{n} possesses properties I, II and III.
4. Finally, we prove assertion IV. By expansion (5), we have

$$
\begin{align*}
& \left|c_{n}(\theta) L_{n}\left(T_{n}\right)-c_{n}(\theta) L_{n}\left(\theta^{*}\right)-\gamma_{Q}(\theta) c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right)\right| \\
& \quad \leq\left|\varepsilon_{n}\left(\bar{T}, \theta^{*}\right) \gamma_{Q}^{-1}(\theta)\right|\left|\gamma_{Q}(\theta) c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right)\right| \tag{8}
\end{align*}
$$

and $\limsup Q_{\theta}^{n}\left\{\left|\varepsilon_{n}\left(\bar{T}_{n}, \theta^{*}\right)\right| \geq \rho\right\}=0, \forall \rho>0$, which follows directly from the relation

$$
\left\{\left|\bar{T}_{n}-\theta^{*}\right| \leq r\right\} \cap\left\{\sup _{\left\{y:\left|y-\theta^{*}\right| \leq r\right\}}\left|\varepsilon_{n}\left(y, \theta^{*}\right)\right|<\rho\right\} \subset\left\{\left|\varepsilon_{n}\left(\bar{T}_{n}, \theta^{*}\right)\right|<\rho\right\}
$$

Denote $X_{n}:=c_{n}(\theta)\left(L_{n}\left(T_{n}\right)-L_{n}\left(\theta^{*}\right)\right), Y_{n}:=\gamma_{Q}(\theta) c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right)$ and $Z_{n}:=\left|\varepsilon_{n}\left(\bar{T}_{n}, \theta^{*}\right) \gamma_{Q}^{-1}\right|$. Then inequality (8) takes the form

$$
\left|X_{n}-Y_{n}\right| \leq Z_{n}\left|Y_{n}\right|
$$

It is well-known that if X_{n} converges weakly to $X\left(X_{n} \xrightarrow{w} X\right)$ and $Z_{n} \xrightarrow{P} 0$, then $Y_{n} \xrightarrow{w} X$. Thus we get

$$
\lim _{n \rightarrow \infty} \mathcal{L}\left\{\gamma_{Q}(\theta) c_{n}^{-1}(\theta)\left(T_{n}-\theta^{*}\right) \mid Q_{\theta}^{n}\right\}=\lim _{n \rightarrow \infty} \mathcal{L}\left\{c_{n}(\theta) L_{n}\left(\theta^{*}\right) \mid Q_{\theta}^{n}\right\}
$$

Assertion (i) is proved. The proof of assertion (ii) easily follows from (i) and inequality (8).

2 Global limiting behaviour of roots

We use the objects introduced in the previous section.
Assume $\Theta=[a, b]$. Furthermore, for convenience, put $a=-\infty$ and $b=+\infty$.

For every θ we consider the set

$$
\begin{gathered}
S_{\theta}=\left\{\widehat{T}=\left\{\widehat{T}_{n}\right\}_{n \geq 1}: \text { for each } n \geq 1, \widehat{T}_{n} \in \mathcal{F}^{n}\right. \text { and } \\
\left.Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} c_{n}^{2}(\theta) L_{n}\left(\widehat{T}_{n}\right)=0\right\} .
\end{gathered}
$$

Theorem 2. Let the following conditions $(\sup c)$ hold:
$(\sup c)_{1}$ the function $\Delta_{Q}(\theta, y)$ is y-continuous for every θ;
$(\sup c)_{2}$ for any $K, 0<K<\infty$, and $\rho>0$,

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\sup _{|y| \leq K}\left|c_{n}^{2}(\theta) L_{n}(y)-\Delta_{Q}(\theta, y)\right|>\rho\right\}=0
$$

Then
I. The following alternative holds: if $\widehat{T} \in S_{\theta}$, then either

$$
\begin{equation*}
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} \widehat{T}_{n}=\theta^{*}=b^{Q}(\theta) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\widehat{T}_{n}\right|>K\right\}>0 \tag{10}
\end{equation*}
$$

for any $K, 0<K<\infty$.
II. If, in addition, the condition

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty}\left|\Delta_{Q}(\theta, y)\right|=K(\theta)>0 \tag{+}
\end{equation*}
$$

holds and

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\sup _{-\infty<y<+\infty}\left|c_{n}^{2}(\theta) L_{n}(y)-\Delta_{Q}(\theta, y)\right|>\rho\right\}=0
$$

for any $\rho>0$, then (9) is valid.
Proof. Let $\widehat{T}=\left\{\widehat{T}_{n}\right\}_{n \geq 1} \in S_{\theta}$ and suppose that inequality (10) is not satisfied. Then there is a number $K_{0}>0$ such that

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\widehat{T}_{n}\right|>K_{0}\right\}=0
$$

Therefore,

$$
\begin{aligned}
& Q_{\theta}^{n}\left\{\left|c_{n}^{2}(\theta) L_{n}\left(\widehat{T}_{n}\right)-\Delta_{Q}\left(\theta, \widehat{T}_{n}\right)\right|>\rho\right\} \\
& \quad \leq Q_{\theta}^{n}\left\{|\widehat{T}|_{n}>K_{0}\right\}+Q_{\theta}^{n}\left\{\left|c_{n}^{2}(\theta) L_{n}\left(\widehat{T}_{n}\right)-\Delta_{Q}\left(\theta, \widehat{T}_{n}\right)\right|>\rho,\left|\widehat{T}_{n}\right| \leq K_{0}\right\} \\
& \leq Q_{\theta}^{n}\left\{|\widehat{T}|_{n}>K_{0}\right\}+Q_{\theta}^{n}\left\{\sup _{|y| \leq K_{0}}\left|c_{n}^{2}(\theta) L_{n}(y)-\Delta(\theta, y)\right|>\rho\right\} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

On the other hand,

$$
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} c_{n}^{2}(\theta) L_{n}\left(\widehat{T}_{n}\right)=0
$$

and hence,

$$
\begin{equation*}
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} \Delta_{Q}\left(\theta, \widehat{T}_{n}\right)=0 \tag{11}
\end{equation*}
$$

Assume now that equality (9) fails too. Then one can choose $\varepsilon>0$ such that

$$
\varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\widehat{T}_{n}-b^{Q}(\theta)\right|>\varepsilon\right\}>0
$$

By the condition $(\sup c)_{1}$,

$$
\Delta(\varepsilon)=\inf _{\left\{y:\left|y-b^{Q}(\theta)\right|>\varepsilon,|y| \leq K_{0}\right\}}\left|\Delta_{Q}(\theta, y)\right|>0,
$$

whence

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\Delta_{Q}\left(\theta, \widehat{T}_{n}\right)\right|>\Delta(\varepsilon)\right\} \\
& \geq \varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\Delta_{Q}\left(\theta, \widehat{T}_{n}\right)\right|>\Delta(\varepsilon),\left|\widehat{T}_{n}\right| \leq K_{0}\right\} \\
& \quad \geq \varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\widehat{T}_{n}-b^{Q}(\theta)\right|>\varepsilon,\left|\widehat{T}_{n}\right| \leq K_{0}\right\}>0
\end{aligned}
$$

which contradicts equality (11).
In order to prove the second assertion of theorem, it is sufficient to note that under the condition $\left(c^{+}\right)$

$$
\inf _{\left\{y:\left|y-b^{Q}(\theta)\right| \geq \varepsilon\right\}} \mid \Delta_{Q}(\theta, y)>0
$$

and to repeat the previous arguments.
Suppose that the conditions of Theorem 1 are satisfied.
For every $n \geq 1$, consider the set
$A_{n}=\left\{\omega \in \Omega^{n}:\right.$ the equation $L_{n}(y, \omega)=0$ has at least one solution $\}$.
Note that $A_{n} \in \mathcal{F}^{n}$. Indeed, recall that the σ-algebra \mathcal{F}^{n} is complete, $L_{n}(y, \cdot) \in \mathcal{F}^{n}$ for each fixed y and $L_{n}(\cdot, \omega)$ is a.s. continuous. Hence, the mapping $(y, \omega) \rightsquigarrow L_{n}(y, \omega)$ is measurable and $B_{n}:=\left\{(y, \omega): L_{n}(y, \omega)=\right.$ $0\} \in \mathcal{B}\left(R_{1}\right) \times \mathcal{F}^{n}$. But $A_{n}=\Pi_{\Omega^{n}}\left(B_{n}\right)$, where $\Pi_{\Omega^{n}}(\cdot)$ is a projection operator. Thus $A_{n} \in \mathcal{F}^{n}$.

Evidently, for any θ, we have $\Omega_{n}^{\theta} \subset A_{n}$, where the set Ω_{n}^{θ} is defined in item 3 of the proof of Theorem 1.

Since under the conditions of Theorem $1, Q_{\theta}^{n}\left\{\Omega_{n}^{\theta}\right\} \rightarrow 1$, for any θ we have

$$
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{A_{n}\right\}=1
$$

For each $n \geq 1$, introduce the sets:
$S_{n}=\left\{\widetilde{T}_{n}: \widetilde{T}_{n}\right.$ is \mathcal{F}^{n}-measurable; $L_{n}\left(\widetilde{T}_{n}\right)=0$ if $\omega \in A_{n} ; \widetilde{T}_{n}=\theta_{0}$ if $\left.\omega \notin A_{n}\right\}$, where θ_{0} is a real number.

Now, put the set of estimators

$$
S_{\text {sol }}=\left\{\widetilde{T}=\left\{\widetilde{T}_{n}\right\}_{n \geq 1}: \forall n \geq 1, \widetilde{T}_{n} \in S_{n}\right\}
$$

Corollary 1. If along with the conditions of Theorem 1 the conditions $(\sup c)$ are satisfied for any θ, then there exists an estimator $T^{*}=\left\{T_{n}^{*}\right\}_{n \geq 1} \in S_{\text {sol }}$ such that

$$
\begin{equation*}
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} T_{n}^{*}=b^{Q}(\theta) \tag{12}
\end{equation*}
$$

for any θ.
If, moreover, for any θ the condition $\left(c^{+}\right)$is satisfied, then any estimator $\widetilde{T} \in S_{\text {sol }}$ has property (12).
Proof. It is sufficient to construct an estimator $T^{*}=\left\{T_{n}^{*}\right\}_{n \geq 1}$ for which (10) fails for each θ.

For any $n \geq 1$ and $\varepsilon>0$, there exists $T_{n}^{*} \in S_{n}$ such that

$$
\left|T_{n}^{*}\right| \leq \underset{\widetilde{T}_{n} \in S_{n}}{\operatorname{ess} \inf }\left|\widetilde{T}_{n}\right|+\varepsilon
$$

By virtue of Theorem 1 , for any θ there exists a sequence $\widehat{T}(\theta)=\left\{\widehat{T}_{n}(\theta)\right\}_{n \geq 1}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{\theta}^{n}\left\{L_{n}\left(\widehat{T}_{n}(\theta)\right)=0\right\}=1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\theta^{-}}^{n} \lim _{n \rightarrow \infty} \widehat{T}_{n}(\theta)=b^{Q}(\theta) \tag{14}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|T_{n}^{*}\right|>K\right\} \leq & \varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|T_{n}^{*}\right|>K, L_{n}\left(\widehat{T}_{n}(\theta)\right) \neq 0\right\} \\
& \quad+\varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|T_{n}^{*}\right|>K, L_{n}\left(\widehat{T}_{n}(\theta)\right)=0\right\} \\
\leq & \varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{L_{n}\left(\widehat{T}_{n}(\theta)\right) \neq 0\right\}+\varlimsup_{n \rightarrow \infty} Q_{\theta}^{n}\left\{\left|\widehat{T}_{n}(\theta)\right|+\varepsilon>K\right\}
\end{aligned}
$$

The first and the second terms on the right-hand side converge to zero by virtue of equalities (13) and (14).

Remark 2. If the conditions of Corollary 1 are satisfied, then by virtue of Theorem 1, IV (ii), there exists an estimator $T=\left\{T_{n}\right\}_{n \geq 1}$ such that

$$
\begin{gather*}
T_{n}=\theta^{*}+\frac{L_{n}\left(\theta^{*}\right)}{\gamma_{Q}(\theta)}+R_{n}(\theta), \tag{15}\\
c_{n}^{-1}(\theta) R_{n}(\theta) \xrightarrow{Q_{\theta}^{n}} 0 .
\end{gather*}
$$

If $\theta^{*}=b^{Q}(\theta)=\theta$ and the distribution Φ from Theorem 1, f), is Gaussian, then we obtain a consistent, linear, asymptotically normal estimator.

References

[1] P. J. Huber, Robust Statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley \& Sons, Inc., New York, 1981.
[2] P. J. Huber, E. M. Ronchetti, Robust Statistics. Second edition. Wiley Series in Probability and Statistics. John Wiley \& Sons, Inc., Hoboken, NJ, 2009.
[3] R. A. Maronna, R. D. Martin, V. J. Yohai, M. Salibián-Barrera, Robust Statistics. Theory and Methods (with R). Second edition of [MR2238141]. Wiley Series in Probability and Statistics. John Wiley \& Sons, Inc., Hoboken, NJ, 2019.

