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Abstract

General statistical model with filtration is considered. Identifying
and real M -estimators are constructed. Namely, consistent, linear,
asymptotically normal estimators are founded, which are basic class
of estimators in robust statistics.
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A key part in robust estimation theory play the Huber M -estimators. In
general, M -estimators may be viewed as follows.

Consider a sequence of filtered statistical models

E =
{
(Ωn,Fn, F n = (Fn

t ), 0 ≤ t ≤ T, (Qn
θ , θ ∈ Θ ⊂ R1))

}
n≥1

, (1)

where for each n ≥ 1 and θ ̸= θ′, the probability measures Qn
θ and Qn

θ′ are
equivalent, Qn

θ ∼ Qn
θ′ , Fn = Fn

T and T > 0 is a number, σ-algebra Fn is
completed and filtration F n satisfies the usual conditions w.r.t. Qn

θ for some,
and hence, for each θ.
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Let for each θ ∈ Θ and n ≥ 1 the process (Ln(θ, t), 0 ≤ t ≤ T ) be a local
(square integrable) Qn

θ -martingale.
Denote Ln(θ) = Ln(θ, t)|t=T and consider stochastic equation (with re-

spect to parameter θ)

Ln(θ) = Ln(θ, ω) = 0, n ≥ 1. (2)

A sequence {Tn(ω), ω ∈ Ωn}n≥1 of Fn-measurable roots of these equa-
tions

(
i.e., for each n ≥ 1, Tn(ω) is a random variable defined on (Ωn,Fn)

with values Θ, and such that

Ln(Tn(ω), ω) = 0
)

(3)

is called a generalized M -estimator.
Notice that the equality (3) may be satisfied only asymptotically (in some

sense, see, e.g., Theorem 1 below).
The proof of assertions concerning the asymptotic behaviour of M -esti-

mators as solutions of equation (2) is carried out in two steps: firstly, the
asymptotic properties are established for the left-hand side of equation (2);
secondly, the asymptotic properties of the estimators (considered as implicit
functions) are obtained by linearization. In this way one may construct con-
sistent, linear, asymptotically normal estimators, which are asymptotically
equivalent of M -estimators (see, e.g., (15) below). Class of such estimators
is a basic class of estimators in robust estimation theory (see, e.g., [1, 2, 3]).

1 Local limiting behaviour of roots

Given a sequence of statistical models (1), and let {cn(θ)}n≥1, cn(θ) > 0,
θ ∈ Θ be a normalizing deterministic sequence.

Consider the sequence of random variables {Ln(θ)}n≥1 = {Ln(θ, ω), ω ∈
Ωn}n≥1 depending on the parameter θ ∈ Θ.

Remark 1. We shall use the following abbreviation

Qn
θ - lim

n→∞
ξn = K,

where ξ = {ξn}n≥1 is a sequence of random variables defined for each n on
Ωn and K is a real number, if ∀ρ > 0,

lim
n→∞

Qn
θ{ω ∈ Ωn : |ξn(ω)−K| > ρ} = 0.
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Theorem 1. Let the following conditions hold:

a) for each θ ∈ Θ, lim
n→∞

cn(θ) = 0;

b) for each n ≥ 1, the mapping θ ⇝ Ln(θ) is continuously differentiable
in θ Qn

θ -a.s., (L̇n(θ) :=
∂
∂θ

Ln(θ));

c) for each θ ∈ Θ, there exists a function ∆Q(θ, y), θ, y ∈ Θ, such that

Qn
θ - lim

n→∞
c2n(θ)Ln(y) = ∆Q(θ, y) (4)

and the equation
∆Q(θ, y) = 0

with respect to the variable y has the unique solution θ∗ = bQ(θ);

d) Qn
θ - lim

n→∞
c2n(θ)L̇n(θ

∗) = −γQ(θ), where γQ(θ) is a positive number for

each θ ∈ Θ;

e) lim
r→0

lim sup
n→∞

Qn
θ{sup{y:|y−θ∗|≤r} c

2
n(θ)|L̇n(y) − L̇n(θ

∗)| > ρ} = 0 for each

ρ > 0.

Then for each θ ∈ Θ there exists a sequence of random variables T = {Tn}n≥1

taking the values in Θ such that

I. lim
n→∞

Qn
θ{Ln(Tn) = 0} = 1;

II. Qn
θ - lim

n→∞
Tn = θ∗;

III. if {T̃n}n≥1 is another sequence with properties I and II, then

lim
n→∞

Qn
θ{Tn = T̃n} = 1.

If, in addition,

f) the sequence of distributions {L{cn(θ)Ln(θ
∗) | Qn

θ}}n≥1 weakly con-
verges to a certain distribution Φ,

then

IV. (i) L{γQ(θ)c−1
n (θ)(Tn − θ∗) | Qn

θ}
w−→ Φ,
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(ii) c−1
n (θ)(Tn − θ∗) =

c−1
n (θ)Ln(θ

∗)

γQ(θ)
+Rn(θ), Rn(θ)

Qn
θ−→ 0.

Proof. 1. By the Taylor formula we have

Ln(y) = Ln(θ
∗) + L̇n(θ

∗)(y − θ∗) + [L̇n(θ̄)− L̇n(θ
∗)](y − θ∗),

where θ̄ = θ∗ +α(θ∗)(y− θ∗), α(θ∗) ∈ [0, 1] and the point θ̄ is chosen so that
θ̄ ∈ Fn (ξ ∈ F means that r.v. ξ is F -measurable).

From this we get

c2n(θ)Ln(y) = c2n(θ)Ln(θ
∗)− γQ(θ)(y − θ∗) + εn(θ̄, θ

∗)(y − θ∗), (5)

where εn(y, θ
∗) ∈ Fn,

εn(y, θ
∗) = c2n(θ)[L̇n(y)− L̇n(θ

∗)] + [c2n(θ)L̇n(θ
∗) + γQ(θ)], y ∈ Θ.

Evidently, conditions d) and e) ensure that

lim
r→0

lim sup
n→∞

Qn
θ

{
sup

{y:|y−θ∗|≤r}
|εn(y, θ∗)| > ρ

}
= 0 (6)

for each ρ > 0.
2. We now show that there exists a family {Ωθ(n, r) : n ≥ 1, r > 0, θ ∈

Θ} with properties

1) Ωθ(n, r) ∈ Fn,

2) lim
r→0

lim sup
n→∞

Qn
θ{Ωθ(n, r)} = 1,

and for any r > 0, n ≥ 1 and ω ∈ Ωθ(n, r) the equation

Ln(y) = 0

has the unique solution Tn in the segment |y − θ∗| ≤ r.
Expansion (5) yields

c2n(θ)Ln(θ
∗ + u)u = c2n(θ)Ln(θ

∗)u− u2γQ(θ) + u2εn(θ̄, θ
∗). (7)

For any θ ∈ Θ, n ≥ 1 and r > 0 define

Ωθ(n, r) =

{
ω ∈ Ωn : |c2n(θ)Ln(θ

∗)| ≤ γQ(θ)r

2
,

sup
{y:|y−θ∗|≤r}

|εn(y, θ∗)| <
γQ(θ)

2

}
.
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Obviously, Ωθ(n, r) ∈ Fn. Hence, if ω ∈ Ωθ(r, n), then from equality (7)
we get Ln(θ

∗ + u)u < 0 for |u| = r.
Since the mapping u ⇝ Ln(θ

∗ + u) is continuous with respect to u, the
equation Ln(θ

∗ + u) = 0 for |u| ≤ r has at least one solution un(θ
∗) with

|un(θ
∗)| ≤ r.

It can be easily seen that if ω ∈ Ωθ(n, r) and |u| ≤ r, then L̇n(θ
∗+u) < 0.

On the other hand, for ω ∈ Ωθ(n, r) and |u| ≤ r,

Ln(θ
∗ + u, ω)− Ln(θ

∗ + un(θ), ω)

=

∫ 1

0

∂

∂α
[Ln((θ

∗ + un(θ
∗)) + α(u− un(θ

∗)), ω)] dα.

Consequently,

Ln(θ
∗ + u, ω) =

∫ 1

0

L̇(θ∗ + un(θ
∗) + α(u− un(θ

∗)), ω)(u− un(θ
∗)) dα

and

Ln(θ
∗ + u, ω)(u− un(θ

∗))

=

∫ 1

0

L̇(θ∗ + un(θ
∗) + α(u− un(θ

∗)), ω)(u− un(θ
∗))2 dα < 0,

provided u ̸= un(θ
∗). Hence Ln(θ

∗ + u, ω) ̸= 0 for |u| ≤ r, u ̸= un(θ
∗). By

the construction of the set Ωθ(n, r) and due to conditions c), d) and e) it is
easily seen that 2) is true as well.

3. Now we construct the sequence T = {Tn}n≥1 with properties I, II and
III. Define

Ωθ
n :=

⋃
k>0

Ωθ(n, k
−1).

Evidently, Ωθ
n ∈ Fn. Let ω ∈ Ωθ

n. Then from the previous statement it
follows that there exists a number k(ω) > 0 such that the equation Ln(y) = 0

has the unique solution T̃n(ω) in the segment |y − θ∗| ≤ (k(ω))−1 with the

mapping ω ⇝ T̃n(ω) which is Ωθ
n ∩ Fn-measurable.

Put

Tn(ω) =

{
T̃n(ω) if ω ∈ Ωθ

n,

θ0 if ω ̸= Ωθ
n,

where θ0 is a point in Θ.
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It is easily seen that, by construction, Tn possesses properties I, II and
III.

4. Finally, we prove assertion IV. By expansion (5), we have

|cn(θ)Ln(Tn)− cn(θ)Ln(θ
∗)− γQ(θ)c

−1
n (θ)(Tn − θ∗)|

≤ |εn(T̄ , θ∗)γ−1
Q (θ)| |γQ(θ)c−1

n (θ)(Tn − θ∗)| (8)

and lim sup
n→∞

Qn
θ{|εn(T̄n, θ

∗)| ≥ ρ} = 0, ∀ρ > 0, which follows directly from

the relation

{|T̄n − θ∗| ≤ r} ∩
{

sup
{y:|y−θ∗|≤r}

|εn(y, θ∗)| < ρ
}
⊂ {|εn(T̄n, θ

∗)| < ρ}.

Denote Xn := cn(θ)(Ln(Tn) − Ln(θ
∗)), Yn := γQ(θ)c

−1
n (θ)(Tn − θ∗) and

Zn := |εn(T̄n, θ
∗)γ−1

Q |. Then inequality (8) takes the form

|Xn − Yn| ≤ Zn|Yn|.

It is well-known that if Xn converges weakly to X (Xn
w−→ X) and

Zn
P−→ 0, then Yn

w−→ X. Thus we get

lim
n→∞

L{γQ(θ)c−1
n (θ)(Tn − θ∗) | Qn

θ} = lim
n→∞

L{cn(θ)Ln(θ
∗) | Qn

θ}.

Assertion (i) is proved. The proof of assertion (ii) easily follows from (i) and
inequality (8).

2 Global limiting behaviour of roots

We use the objects introduced in the previous section.
Assume Θ = [a, b]. Furthermore, for convenience, put a = −∞ and

b = +∞.
For every θ we consider the set

Sθ =
{
T̂ = {T̂n}n≥1 : for each n ≥ 1, T̂n ∈ Fn and

Qn
θ - lim

n→∞
c2n(θ)Ln(T̂n) = 0

}
.

Theorem 2. Let the following conditions (sup c) hold:
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(sup c)1 the function ∆Q(θ, y) is y-continuous for every θ;

(sup c)2 for any K, 0 < K < ∞, and ρ > 0,

lim
n→∞

Qn
θ

{
sup
|y|≤K

|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ
}
= 0.

Then

I. The following alternative holds: if T̂ ∈ Sθ, then either

Qn
θ - lim

n→∞
T̂n = θ∗ = bQ(θ), (9)

or
lim
n→∞

Qn
θ{|T̂n| > K} > 0 (10)

for any K, 0 < K < ∞.

II. If, in addition, the condition

(c+) lim
|y|→∞

|∆Q(θ, y)| = K(θ) > 0

holds and

lim
n→∞

Qn
θ

{
sup

−∞<y<+∞
|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ

}
= 0

for any ρ > 0, then (9) is valid.

Proof. Let T̂ = {T̂n}n≥1 ∈ Sθ and suppose that inequality (10) is not satis-
fied. Then there is a number K0 > 0 such that

lim
n→∞

Qn
θ{|T̂n| > K0} = 0.

Therefore,

Qn
θ

{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ

}
≤ Qn

θ

{
|T̂ |n > K0

}
+Qn

θ

{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ, |T̂n| ≤ K0

}
≤ Qn

θ

{
|T̂ |n > K0

}
+Qn

θ

{
sup

|y|≤K0

|c2n(θ)Ln(y)−∆(θ, y)| > ρ
}
→ 0 as n → ∞.
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On the other hand,

Qn
θ - lim

n→∞
c2n(θ)Ln(T̂n) = 0

and hence,
Qn

θ - lim
n→∞

∆Q(θ, T̂n) = 0. (11)

Assume now that equality (9) fails too. Then one can choose ε > 0 such
that

lim
n→∞

Qn
θ

{
|T̂n − bQ(θ)| > ε

}
> 0.

By the condition (sup c)1,

∆(ε) = inf
{y:|y−bQ(θ)|>ε, |y|≤K0}

|∆Q(θ, y)| > 0,

whence

lim
n→∞

Qn
θ

{
|∆Q(θ, T̂n)| > ∆(ε)

}
≥ lim

n→∞
Qn

θ

{
|∆Q(θ, T̂n)| > ∆(ε), |T̂n| ≤ K0

}
≥ lim

n→∞
Qn

θ

{
|T̂n − bQ(θ)| > ε, |T̂n| ≤ K0

}
> 0,

which contradicts equality (11).
In order to prove the second assertion of theorem, it is sufficient to note

that under the condition (c+)

inf
{y:|y−bQ(θ)|≥ε}

|∆Q(θ, y) > 0

and to repeat the previous arguments.

Suppose that the conditions of Theorem 1 are satisfied.
For every n ≥ 1, consider the set

An = {ω ∈ Ωn : the equation Ln(y, ω) = 0 has at least one solution}.

Note that An ∈ Fn. Indeed, recall that the σ-algebra Fn is complete,
Ln(y, ·) ∈ Fn for each fixed y and Ln(·, ω) is a.s. continuous. Hence, the
mapping (y, ω) ⇝ Ln(y, ω) is measurable and Bn := {(y, ω) : Ln(y, ω) =
0} ∈ B(R1)×Fn. But An = ΠΩn(Bn), where ΠΩn(·) is a projection operator.
Thus An ∈ Fn.
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Evidently, for any θ, we have Ωθ
n ⊂ An, where the set Ωθ

n is defined in
item 3 of the proof of Theorem 1.

Since under the conditions of Theorem 1, Qn
θ{Ωθ

n} → 1, for any θ we have

lim
n→∞

Qn
θ{An} = 1.

For each n ≥ 1, introduce the sets:

Sn = {T̃n : T̃n is Fn-measurable; Ln(T̃n) = 0 if ω ∈ An; T̃n = θ0 if ω /∈ An},

where θ0 is a real number.
Now, put the set of estimators

Ssol = {T̃ =
{
T̃n}n≥1 : ∀n ≥ 1, T̃n ∈ Sn

}
.

Corollary 1. If along with the conditions of Theorem 1 the conditions (sup c)
are satisfied for any θ, then there exists an estimator T ∗ = {T ∗

n}n≥1 ∈ Ssol

such that
Qn

θ - lim
n→∞

T ∗
n = bQ(θ) (12)

for any θ.
If, moreover, for any θ the condition (c+) is satisfied, then any estimator

T̃ ∈ Ssol has property (12).

Proof. It is sufficient to construct an estimator T ∗ = {T ∗
n}n≥1 for which (10)

fails for each θ.
For any n ≥ 1 and ε > 0, there exists T ∗

n ∈ Sn such that

|T ∗
n | ≤ ess inf

T̃n∈Sn

|T̃n|+ ε.

By virtue of Theorem 1, for any θ there exists a sequence T̂ (θ) = {T̂n(θ)}n≥1

such that
lim
n→∞

Qn
θ{Ln(T̂n(θ)) = 0} = 1 (13)

and
Qn

θ - lim
n→∞

T̂n(θ) = bQ(θ). (14)

Thus, we have

lim
n→∞

Qn
θ

{
|T ∗

n | > K
}
≤ lim

n→∞
Qn

θ

{
|T ∗

n | > K, Ln(T̂n(θ)) ̸= 0
}

+ lim
n→∞

Qn
θ

{
|T ∗

n | > K, Ln(T̂n(θ)) = 0
}

≤ lim
n→∞

Qn
θ

{
Ln(T̂n(θ)) ̸= 0

}
+ lim

n→∞
Qn

θ

{
|T̂n(θ)|+ ε > K

}
.
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The first and the second terms on the right-hand side converge to zero
by virtue of equalities (13) and (14).

Remark 2. If the conditions of Corollary 1 are satisfied, then by virtue of
Theorem 1, IV (ii), there exists an estimator T = {Tn}n≥1 such that

Tn = θ∗ +
Ln(θ

∗)

γQ(θ)
+Rn(θ), (15)

c−1
n (θ)Rn(θ)

Qn
θ−→ 0.

If θ∗ = bQ(θ) = θ and the distribution Φ from Theorem 1, f), is Gaussian,
then we obtain a consistent, linear, asymptotically normal estimator.
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