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Abstract
There is an analytic formula counting the number of ordered
samples of N non-negative integers making up a given sum.
In this paper we study the number of unordered samples
of N non-negative integers with a given sum. We produce
a closed form solution for N = 3 non-negative integers.
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1 Introduction
A typical approach to finding the total number of ordered samples (a1+...+aN )
of N non-negative integers making up a sum of n(n ≥ N, a1 + ...aN = n) is
to take n ones 1 + 1 + ... + 1 (n times) and put N − 1 separator bars in the
sequence. The total umber of arrangements of bars and ones can be viewed as
the total number of ordered arrangements of N − 1 zeros and n ones which
obviously is Cn

n+N−1. See [1].
However, the same problem gets complicated for unordered samples. There is
a known recursion in ([2]) which is defined as

fN (n) = fN−1(n) + fN (n−N) (1)
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In the text that follows, we obtain a precise formula for N = 3 and n ≥ N to
be

f3(n) = I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
+

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
+

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0)}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
(2)

which reduces to

f3(n) =
(n+ 3− {n}3)(n+ 6− {n}3)

18
+

(n+ 2({n}3)2)− (3{n}3)2

36
(3)

where {n}k denotes a modulo operator giving a remainder for division of n
over k.

2 Graphical Representation of Partitions, N=3
Let us denote by fN (n) the function counting the number of unordered samples
of N non-negative integers [a1, ..., aN ] such that a1 + ... + aN = n. Let by
convention f0(n) = 1 for all n. Obviously f1(n) = 1 for all n as well. It
can easily be checked that for even n, f2(n) = n+2

2 and for odd n we have
f2(n) =

n+1
2 . We can thus define f2(n) with the indicator functions as

f2(n) = I{n mod 2=0}
n+ 2

2
+ I{n mod 2=1}

n+ 1

2
(4)

For N = 3, we take the sum of N ones and partition the sum of series with
2 separator bars. This can best be illustrated through an example. For n = 3
we have the following arrangements of 2 separator bars

|| 1 + 1 + 1, | 1 | +1 + 1, 1 | +1 | +1 (5)

The first arrangement in (5) corresponds to a1 = 0, a2 = 0, a3 = 3. The
second arrangement corresponds to a1 = 0, a2 = 1, a3 = 2 and the last one to
a1 = 1, a2 = 1, a3 = 1. So we have the followig sample {003, 012, 111}. Note
that the numbers in each sample are listed in a non-decreasing order. That is
why the arrangement like | 1+1 | +1 are ignored since that would correspond
to the sample element 021 in which the numbers are not put in non-decreasing
order and thus such an element already extists as 012.
We can enumerate the positions of separator bars in the series of ones as follows
112+13+14 where the superscripts mark the positions of possible placements
of the separator bars. Then the sample {003, 012, 111} can be transformed
into the following sample {11, 12, 23}. In this sample, the first element 11
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stands for the two bars placed at the position 1 and thus it corresponds to the
first partition in (5). The element 12 corresponds to the second partition and
respectively 23 is for the third partition.
We view the sample elements as the coordinates of points on the cartesian
coordinate system and for convenience we reverse the numbers. So {11, 12, 23}
becomes {11, 21, 32}. The points on the coordinate system corresponding to
this sample is

Fig. 1: f3(3) = 3

Likewise, for n = 4 we have the following partitions identical to (5) (the
corresponding samples and the reverse versions of them are given below each
partition)

|| 1+ 1+1+1, | 1 | +1+1+1, 1 | +1 | +1+1, 1 | +1 | +1+1 (6)

Partition: || 1 + 1 + 1 + 1 | 1 | +1 + 1 + 1 1 | +1 | +1 + 1 1 | +1 | +1 + 1
Sample: 004 013 022 112
Coordinate: 11 12 13 23
Reversed: 11 21 31 32

and the corresponding plot for f3(4) = 4 is on Fig.2 below.
The appendix at the end of the paper contains some of the partitions

and the respective graphs. We take some of the examples here to develop the
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Fig. 2: f3(4) = 4

Fig. 3: f3(15) = 27 Fig. 4: f3(16) = 30 Fig. 5: f3(17) = 33

Fig. 6: f3(18) = 37 Fig. 7: f3(19) = 40 Fig. 8: f3(20) = 44

formula (2). The examples for N = 3 are n = 15, n = 16, n = 17, n = 18, n =
19, n = 20.
Let us begin with n = 15, n = 16 and n = 17 on the one hand and n = 18, n =
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19, n = 20 on another. The respective graphs are given in Fig. 3 to Fig. 8.
There are some interesting patters emerging. In particular, we have 3 possible
configurations listed below
Configuration 1, n mod 3 = 0 : Fig.3 displays the case when n = 15 which is
divisible by 3. On that graph there is an extreme point placed at the coordinate
(11, 6). This point is unique in the sense that it does not share either x or y
coordinate with any other point. In general, there is a point located at the
coordinate (x0, y0) while there is no any other point having either x0 as x
coordinate or y0 as y coordinate. The value of y0 coordinate can be found by

y0 = 1 +
n

3
(7)

Configuration 2, n mod 3 = 1: Fig. 4 displays the case when n = 16. The points
put in squares indicate the additions to the previous graph. So as we move
from Fig. 3 to Fig. 4 we have new points added on the coordinates (11, 5),
(10, 3) and (9, 1). In general, we have the points added on the coordinates
(x0, y0 − 1), (x0 − 1, y0 − 3) and so on till the last y coordinate reaches 1. i.e.
y = 1. The value of y0 coordinate now is

y0 = 1 +
n− 1

3
(8)

Configuration 3, n mod 3 = 2: Fig. 5 displays the case when n = 17. Again,
the points in the squares indicate the additions from the previous case. In
particular when moving from Fig. 4 to Fig. 5 we have the new points added
on the coordinates (12, 6), (11, 4) and (10, 2). In general, the points are added
on (x0 + 1, y0), (x0, y0 − 2) and so on till the last point’s y coodinate reaches
2. The value of y0 for this configuration is

y0 = 1 +
n− 2

3
(9)

In total we only have these 3 configurations and the cycle goes over and over
again. For example, when n = 18, the configuration is similar to the case when
n = 15. In general, all n mod 3 = 0 configurations are similar with a slight
difference. When n is odd, the last added point occurs at the coordinate y = 2
while for even n, the additions continue till y = 1. Similar differences hold for
cases n mod 3 = 1 and n mod 3 = 2. In particular, for odd n − 1, we keep
adding points as described in Configuration 2 till the last point’s y coordinate
is y = 1 while for even n− 1, the last point added occurs at the y coordinate
of y = 2. Similarly for odd n− 2 we have the last added point’s y coordinate
to be y = 2 and for even n− 2 we have the same coordinate to be y = 1.
f3(n) is simply the number of points on a corresponding plot. In order to count
them we take the diagonal approach. Let us observe the counting method for
all 3 configurations for the above mentioned examples.
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Configuration 1: We can split the total number of points on Fig. 3 into two
parts. The upper part of (and including) the main diagonal and the lower part.

Fig. 9: f3(15) = 27 Fig. 10: f3(16) = 30 Fig. 11: f3(17) = 33

Fig. 12: f3(18) = 37 Fig. 13: f3(19) = 40 Fig. 14: f3(20) = 44

We refer to the formula of the sum n terms of arithmetic series which in its
more convenient form can according to [REFERENCE HERE] be written as

Sn =
n

2
(a1 + an) (10)

where a1 and an are respectively the first and the last terms of the series.
In configuration 1, the upper part of (and including) the longest diagonal is
summed as 1 + 2 + ... + (1 + n

3 ) where the last term comes from (7). By
(10) this sum is (n+3)(n+6)

18 . As for the lower part of the diagonal, we have 2
variations. In particular, when n is odd (the case shown on Fig. 9) the sum
of the arithmetic series with the common difference of 2 consisting of the
following terms 1 + 3 + 5 + ... + (n3 − 1) which by (10) is n2

36 . On the other
hand, if n is even (the case shown on Fig. 12), the sum of the arithmetic series
is 2+ 4+ 6+ ...+ (n3 − 1) which by (10) is (n−3)(n+3)

36 . Combining these terms
yields the number of unordered samples of 3 non - negative integers with a
sum n when n mod 3 = 0 which is

I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
. (11)

Similarly, for configuration 2, the upper part of (and including) the longest
diagonal is summed as 1+2+ ...+(1+ n−1

3 ) which by (10) is (n+2)(n+5)
18 . The

lower parts differ according to whether n − 1 is odd or even. For odd n − 1
(the case shown on Fig. 10) the sum of the arithmetic series is 2 + 4 + 6 +
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...+ n−1
3 which by (10) is (n−1)(n+5)

18 . For n− 1 being even, the series becomes
1 + 3 + 5 + ... + n−1

3 which by (10) is (n+2)2

36 . Combininig these terms yields
the number of unordered samples of 3 non - negative integers with a sum n
when n mod 3 = 1 which is

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
.

(12)
Finally, for configuration 3, the upper part of (and including) the lonest diag-
onal is summed as 1+ 2+ 3+ ...+ (1+ n−3

3 ) which by (10) is (n+1)(n+4)
38 . The

lower parts similarly to the previous configurations is differ according to n−2
being odd or even. For odd n− 2, the sum is 2+4+ ...+ n−1

3 which by (10) is
(n+4)2

36 and for odd n− 2 the sum 1+ 3+ ...+ (1+ n−3
3 ) by (10) is (n+1)(n+7)

36 .
Combininig these terms yields the number of unordered samples of 3 non -
negative integers with a sum n when n mod 3 = 2 which is

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
(13)

In total, f3(n) turns out to be the sum of (11), (12) and (13) which is (2)
restated below

f3(n) = I{{n}3=0}

[
(n+ 3)(n+ 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n− 3)(n+ 3)

36

]
+

I{{n}3=1}

[
(n+ 2)(n+ 5)

18
+ I{{n}2=0}

(n+ 2)2

36
+ I{{n}2 6=0}

(n− 1)(n+ 5)

36

]
+

I{{n}3=2}

[
(n+ 1)(n+ 4)

18
+ I{{n}2=0)}

(n+ 4)2

36
+ I{{n}2 6=0}

(n+ 1)(n+ 7)

36

]
It is easily verified that the formula above can be reduced to (3) component
by component. This is also restated below

f3(n) =
(n+ 3− {n}3)(n+ 6− {n}3)

18
+

(n+ 2({n}3)2)− (3{n}3)2

36

At this point it remains to prove the formula. This is done by induction (1)
part by part.
To prove that the configuration 1 part of the formula holds for any n ≥ 3, we
assume that it holds for some n ≥ 3 and show that it also holds for n+ 3. In
fact, it can easily be shown that if we put n+3 in place of n in (7), we obtain
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the following sum in place of (11)

I{{n+3}3=0}(1 + 2 + 3 + ...+ (1 +
n+ 3

3
)+

I{{n+3}2=0}(1 + 3 + 5 + ...+ (
n+ 3

3
− 1))+

I{{n+3}2 6=0}(2 + 4 + 6 + ...+ (
n+ 3

3
− 1))).

(14)

Applying (10) to each component yields

I{{n+3}3=0}

[
6 + n

6

9 + n

3
+ I{{n+3}2=0}

(n+ 3)2

36
+ I{{n+3}2 6=0}

n(n+ 6)

36

]
.

(15)
Similarly, for configuration 2 part of the formula, we get

I{{n+3}3=1}(1 + 2 + 3 + ...+ (1 +
n+ 2

3
)+

I{{n+3}2=0}(2 + 4 + 6 + ...+
n+ 2

3
)+

I{{n+3}2 6=0}(1 + 3 + 5 + ...+
n+ 2

3
)).

(16)

This by applying (10) becomes

I{{n+3}3=1}

[
5 + n

6

9 + n

3
+ I{{n+3}2=0}

n+ 2

12

8 + n

3
+ I{{n+3}2 6=0}

(n+ 5)2)

36

]
.

(17)
Lastly, for configuration 3 part of the formula, we have

I{{n+3}3=2}(1 + 2 + 3 + ...+ (1 +
n+ 1

3
)+

I{{n+3}2=0}(1 + 3 + 5 + ...+ (1 +
n+ 1

3
))+

I{{n+3}2 6=0}(2 + 4 + 6 + ...+ (1 +
n+ 1

3
))).

(18)

This by applying (10) becomes

I{{n+3}3=1}

[
4 + n

6

7 + n

3
+ I{{n+3}2=0}

(n+ 7)2)

36
+ I{{n+3}2 6=0}

4 + n

12

10 + n

3

]
.

(19)
Combining (15), (17) and (19) yields f3(n+ 3) defined by (2).

On the other hand, by taking arbitrary non - negative integers, the
correctness of (2) and (3) can be easily verified by (1).
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3 General Recursive Formula for Arbitrary N
and n >= N

In terms of modulus operators, (1) can be redefined for different N -s. For
N = 4, we have

f4(n) = I{{n}4=0}

n
4 +1∑
k=1

f4k−4(3) + I{{n}4=1}

n−1
4 +1∑
k=1

f4k−3(3)+

I{{n}4=2}

n−2
4 +1∑
k=1

f4k−2(3) + I{{n}4=3}

n−3
4 +1∑
k=1

f4k−1(3)

(20)

For N = 5, we have

f5(n) = I{{n}5=0}

n
5 +1∑
k=1

f5k−5(4) + I{{n}5=1}

n−1
5 +1∑
k=1

f5k−4(4)+

I{{n}5=2}

n−2
5 +1∑
k=1

f5k−3(4) + I{{n}5=3}

n−3
5 +1∑
k=1

f5k−2(4)+

I{{n}5=4}

n−4
5 +1∑
k=1

f5k−1(4)

(21)

For N = 6, we have

f6(n) = I{{n}6=0}

n
6 +1∑
k=1

f6k−6(5) + I{{n}6=1}

n−1
6 +1∑
k=1

f6k−5(5)+

I{{n}6=2}

n−2
6 +1∑
k=1

f6k−4(5) + I{{n}6=3}

n−3
6 +1∑
k=1

f6k−3(5)+

I{{n}6=4}

n−4
6 +1∑
k=1

f6k−2(5) + I{{n}6=5}

n−5
6 +1∑
k=1

f6k−1(5)

(22)
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In general, for an arbitrary N , we have (1)

fN (n) = I{{n}N=0}

n
N +1∑
k=1

fNk−N (N − 1) + I{{n}N=1}

n−1
N +1∑
k=1

fNk−N+1(N − 1) + ...+

I{{n}N=N−1}

n−N+1
N +1∑
k=1

fNk−1(N − 1) =

N−1∑
j=1

I{{n}N=j}

n−j
N +1∑
k=1

fNk−N+j(N − 1)

(23)

References
[1] Shiryaev A.N., Problems in Probability, Springer, 2012, pp.4

[2] Shiryaev A.N., Erlikh I.G., Yaskov P.A., Probability in Theorems and
Problems, pp. 12

Appendix A Scatter Configurations for N = 3
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Fig. A1: f3(3) = 3 Fig. A2: f3(4) = 4 Fig. A3: f3(5) = 5

Fig. A4: f3(6) = 7 Fig. A5: f3(7) = 8 Fig. A6: f3(8) = 10

Fig. A7: f3(9) = 12 Fig. A8: f3(10) = 14 Fig. A9: f3(11) = 16

Fig. A10: f3(12) = 19 Fig. A11: f3(13) = 21 Fig. A12: f3(14) = 24

Fig. A13: f3(15) = 27 Fig. A14: f3(16) = 30 Fig. A15: f3(17) = 33

Fig. A16: f3(18) = 37 Fig. A17: f3(19) = 40 Fig. A18: f3(20) = 44

Fig. A19: f3(20) = 44
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