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1 Introduction

In a number of papers[1,2] Adomian develops a numerical technique using
special kinds of polynomials for solving non-linear functional equations. How-
ever, Adomian and his collaborators did not develop widely the problem of
convergence.

In this article we will study by Adomian technique some kind of quadratic
backward martingale equation and prove the convergence of the series. For
example we tackle an equation of the form

ET (m)EαT (m⊥) = c exp{η} (1)

w.r.t. stochastic integrals m =
∫
fsdWs, m

⊥ =
∫
gsdW

⊥
s and real number c,

where (W,W⊥) is 2-dimension Brownian Motion and η is a random variable.
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Equations of such type are arising in mathematical finance and they are
used to characterize optimal martingale measures (see, Biaginiat at al (2000),
Mania and Tevzadze (2000), (2003),(2006)). Note that equation (1) can be
applied also to the financial market models with infinitely many assets (see
M. De Donno at al (2003)). In Biagini at al (2000) an exponential equation
of the form

ET (m)

ET (m⊥)
= ce

∫ T
0 λ2sds

was considered (which corresponds to the case α = −1 ).
Our goal is to show the solvability of the equation (1) using the Ado-

mian method proving the convergence of series. On the one hand, a sim-
pler proof of solvability is obtained. On the other hand, it allows to obtain
the approximation of the solution. It is possible to find a solution in the
form of series, if we define a sequence of martingales w.r.t. the measure
ET (
∑n

i mi+
∑n

i m
⊥
i )·P from equations c′ET (m′n+1+m′⊥n+1) = E2T (m′⊥n ), where

m′n+1 = mn+1 − 〈mn+1,
∑n

i ,mi〉, m′⊥n+1 = m⊥n+1 − 〈m⊥n+1,
∑n

i m
⊥
i 〉, and then

we write down the solution

m =
∞∑
k

mk, m
⊥ =

∞∑
k

m⊥k

provided the series are convergent. The proof of the convergence is greatly
simplified if we present equation as a BSDE in the space of BMO-martingales
and use the properties of the BMO-norm. The result is resumed in Theorem
1.

Finally we provide some examples, exactly solvable by Adomian series
and also example non-solvable at all.

2 The main result

Let (Ω,F , P ) be a probability space with filtration F = (Ft, t ∈ [0, T ]). We
assume that all local martingales with respect to F are continuous. Here T
is a fixed time horizon and F = FT .

LetM be a stable subspace of the space of square integrable martingales
H2. Then its ordinary orthogonalM⊥ is a stable subspace and any element
of M is strongly orthogonal to any element of M⊥ (see, e.g. [5], [6]).

We consider the following exponential equation

ET (m)EαT (m⊥) = c exp{η}, (2)
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where η is a given FT -measurable random variable and α is a given real
number. A solution of equation (2) is a triple (c,m,m⊥), where c is strictly
positive constant, m ∈ M and m⊥ ∈ M⊥. Here E(X) is the Doleans-Dade
exponential of X.

It is evident that if α = 1 then equation (2) admits an ”explicit” solution.
E.g., if α = 1 and η is bounded, then using the unique decomposition of the
martingale E(exp{η}/Ft)

E(exp{η}/Ft) = E exp{η}+mt(η) +m⊥t (η), m(η) ∈M, m⊥(η) ∈M⊥,
(3)

it is easy to verify that the triple c = 1
E exp{η} ,

mt =

∫ t

0

1

E(exp{η}/Fs)
dms(η), m⊥t =

∫ t

0

1

E(exp{η}/Fs)
dm⊥s (η)

satisfies equation (2).
Our aim is to prove the existence of a unique solution of equation (2) for

arbitrary α 6= 0 and η of a general structure, assuming that it satisfies the
following boundedness condition:

B) η is an FT -measurable random variable of the form

η = η̄ + γAT , (4)

where η̄ ∈ L∞, γ is a constant and A = (At, t ∈ [0, T ]) is a continuous
F -adapted process of finite variation such that

E(varT (A)− varτ (A)/Fτ ) ≤ C

for all stopping times τ for a constant C > 0.
One can show that equation (2) is equivalent to the following semimartin-

gale backward equation with the square generator

Yt = Y0 −
γ

2
At − 〈L〉t −

1

α
〈L⊥〉t + Lt + L⊥t , YT =

1

2
η̄. (5)

We use also the equivalent equation of the form

LT + L⊥T = c+ 〈L〉T +
1

α
〈L⊥〉T +

γ

2
AT .

w.r.t. (c, L, L⊥).
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We use notations |M |
BMO

= inf{C : E
1
2 (〈M〉T − 〈M〉τ |Fτ ) ≤ C} for

BMO-norms of martingales, |A|ω = inf{C : E(varTt (A)|Ft) ≤ C} for norms
of finite variation processes and A ·M for stochastic integrals.

Let us consider the system of semimartingale backward equations

Y
(0)
t = Y

(0)
0 − γ

2
At + L

(0)
t + L

(0)⊥
t , Y

(0)
T =

1

2
η̄,

Y
(n+1)
t = Y

(n+1)
0

−
n∑
k=0

〈L(k), L(n−k)〉t −
1

α

n∑
k=0

〈L(k)⊥, L(n−k)⊥〉t + L
(n+1)
t + L

(n+1)⊥
t ,

Y
(n+1)
T = 0.

The sequence Y
(n)
0 = c(n), L(n) + L⊥(n), n = 0, 1, 2, · · · can be defined conse-

quently by the equations

E(η|Ft) +
γ

2
E(AT |Ft) = c(0) + L

(0)
t + L

⊥(0)
t ,

n∑
k=0

E(〈L(k), L(n−k)〉T |Ft)−
1

α

n∑
k=0

E(〈L(k)⊥, L(n−k)⊥〉T |Ft)

= c(n+1) + L
(n+1)
t + L

⊥(n+1)
t .

Remark. If At =
∫ t
0
a(s,Ws, Bs)ds, then the solution of (5) is of the form

Yt = v(t,Wt, Bt), where v(t, x, y) is decomposed as series
∑

n v
n(t, x, y) sat-

isfying the system of PDEs

(∂t +
1

2
∆)v0(t, x, y) + a(t, x, y) = 0, v0(T, x, y) = 0,

(∂t +
1

2
∆)vn(t, x, y)

+
1

2

n−1∑
k=0

(vkx(t, x, y)vn−k−1x (t, x, y) + αvky(t, x, y)vn−k−1y (t, x, y)) = 0,

vn(T, x, y) = 0, n ≥ 1.

Lemma 1. Let
Yt = Y0 + At +mt, YT = η,

where m is a martingale, η ∈ L∞ and |A|ω <∞. Then m ∈ BMO and

|m|
BMO
≤ |η|∞ + |A|ω. (6)
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In particular, if |A|ω <∞ then the martingale E(AT |Ft) belongs to the BMO
space and

|E(AT |F.)|BMO
≤ |A|ω.

Proof. By the Ito formula

Y 2
t = 2

∫ t

0

Ysdms + 2

∫ t

0

YsdAs + 〈m〉t.

Taking the difference Y 2
τ − Y 2

T and conditional expectations we have that

Y 2
τ + E(〈m〉T − 〈m〉τ |Fτ ) = E(η2|Fτ )− 2E(

∫ T

τ

YsdAs|Fτ ) ≤

≤ |η|2∞ + 2|Y |∞|A|ω. (7)

E(
∫ T
τ
Ysdms|Fτ ) = 0, since Yt ≤ E(η + |AT − At||Ft) is bounded and m is a

martingale. Since the right-hand side of (7) does not depend on τ from (7)
we obtain

|Y |2∞ + ||m||2BMO ≤ |η|2∞ + |Y |2∞ + |A|2ω.

Therefore
||m||2BMO ≤ |η|2∞ + |A|2ω,

which implies inequality (6).

Lemma 2. For the BMO norms of martingales L(n) + L⊥(n), defined
above, the following estimates are true

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
, (8)

where the coefficients an are calculating recurrently from

a0 = 1, an+1 =
n∑
k=0

akan−k.

Proof. Using Lemma 1 it is easy to show that

|L(1) + L⊥(1)|
BMO
≤ a1(1 + |β|)|L(0) + L⊥(0)|2

BMO
,

|L(2) + L⊥(2)|
BMO
≤ a2(1 + |β|)2|L(0) + L⊥(0)|3

BMO
.
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Assume that inequality (8) is valid for any k ≤ n and let us show that

|L(n+1) + L⊥(n+1)|
BMO
≤ an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2

BMO
. (9)

Applying Lemma 1 for Y
(n+1)
t and the Kunita-Watanabe inequality we have

|L(n+1) + L⊥(n+1)|
BMO
≤

≤ ess sup
τ

n∑
k=0

E(varTτ (
n∑
k

〈L(k), L(n−k)〉+ β〈L⊥(k), L⊥(n−k)〉)|Fτ )

≤
n∑
k=0

ess sup
τ

E
1
2 (varTτ 〈L(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

+|β|
n∑
k=0

ess sup
τ

E
1
2 (varTτ 〈L⊥(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

≤
n∑
k

|L(k)|
BMO
|L(n−k)|

BMO
+ |β||L⊥(k)|

BMO
|L⊥(n−k)|

BMO

≤ (1 + |β|)
n∑
k=0

|L(k) + L⊥(k)|
BMO
|L(n−k) + L⊥(n−k)|

BMO
. (10)

Therefore, from (10), using inequalities (8) for any k ≤ n, we obtain

|L(n+1) + L⊥(n+1)|
BMO
≤

≤ (1+|β|)
n∑
k=0

ak(1+|β|)k|L(0)+L⊥(0)|k+1
BMO

an−k(1+|β|)n−k||L(n−k)+L⊥(n−k)|n−k+1
BMO

≤ (1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

n∑
k=0

akan−k =

= an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

and the validity of inequality (8) follows by induction.

Theorem 1. The series
∑

n≥0(L
(n) +L⊥(n)) is convergent in BMO-space,

if γ and |η̄|∞ are small enough and the sum of series is a solution of the
equation (5).
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Proof. Without loss of generality assume that η = 0. Using the lemma 2
we get

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
≤ an(1 + |β|)n|γA|n+1

ω .

By lemma 3 of appendix, since

limn→∞
n
√
an = limn→∞

n

√
1

2n+ 1
C2n+2
n+1 = limn→∞

n

√
(2n)!

n!n!
= limn→∞

n

√
(2n)2n

n2n
= 4,

the series is convergent, when γ < 1
4|A|ω(1+|β|) .

Remark. Since max(|L|
BMO

, |L⊥|
BMO

) ≤ |L+L⊥|
BMO
≤ |L|

BMO
+ |L⊥|

BMO

the convergence
∑

n≥0(L
(n) + L⊥(n)) implies convergence of

∑
n≥0 L

(n) and∑
n≥0 L

⊥(n) and vice versa.
The existence of the solution for arbitrary bounded η is proven [8]. We

can prove here little more general result

Proposition 1. There exists solution of (2) for sufficiently small γ and
arbitrary bounded η̄ .

Proof. Let m̄ + m̄⊥ be solution of (2) for η = γAT and sufficiently small
γ. From the result of [8] there exists a solution of

ET (m̃)EαT (m̃⊥) = c exp{η̄},

w.r.t
P̄ = ET (m̄+ m̄⊥)·, m̃+ m̃⊥ ∈M(F, P̄ ) +M⊥(F, P̄ ).P.

It is easy to verify that m+m⊥ = m̄+ m̄⊥ + m̃+ m̃⊥ is a solution of (2) for
η = η̄ + γAT .

The uniqueness of the solution was proved in [8].

Proposition 2. . Let η be an FT -measurable random variable. If there
exists a triple (c,m,m⊥), where c ∈ R+,m ∈ BMO∩M,m⊥ ∈ BMO∩M⊥

satisfying equation (2) then such solution is unique.

We now show that without finiteness of |A|ω either the solution does not
exists or the convergence of series is valid in a week sense.

Example 1. Let α = −1, γ = 2, η̄ = 0, At = 1
2

∫ t
0
(W 2

s +W 2⊥
s )ds, F =

(FW,W
⊥

t ), where W,W⊥ is 2-dimensional Brownian motion. Then (5) be-
comes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +
1

2

∫ T

0

(W 2
s +W 2⊥

s )ds.
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We have

L
(0)
T + L

(0)⊥
T = c0 +

∫ T

0

(T − s)WsdWs +

∫ T

0

(T − s)W⊥
s dW

⊥
s ,

L
n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.

Let assume

L
(n)
T =

∫ T

0

(T − s)2n+1αnWtdWs,

L
(n)⊥
T =

∫ T

0

(T − s)2n+1βnW
⊥
t dW

⊥
s .

Then a0 = 1, β0 = 1 and

L
(n+1)
T = c′n +

n∑
k=0

∫ T

0

(T − s)2n+2αkαn−kW
2
s ds

L
(n+1)⊥
T = c′′n −

n∑
k=0

∫ T

0

(T − s)2n+2βkβn−kW
2
s ds, n ≥ 0.

Taking stochastic derivatives Dt, D
⊥
t and conditional expectations on both

sides we get

(T − s)2n+3αnWt = 2
n∑
k=0

αkαn−kWt

∫ T

t

(T − s)2n+2ds

=
2

2n+ 3
Wt(T − t)2n+3

n∑
k=0

αkαn−k,

(T − s)2n+3βnW
⊥
t = − 2

2n+ 3
W⊥
t (T − t)2n+3

n∑
k=0

βkβn−k,

which means that

αn+1 =
2

2n+ 3

n∑
k=0

αkαn−k, βn+1 = − 2

2n+ 3

n∑
k=0

βkβn−k, n ≥ 0.
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Introducing α(s) =
∑∞

n=0 αns
2n+1, β(s) =

∑∞
n=0 βns

2n+1 one obtains

α′(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 1 + 2
∞∑
n=0

n∑
k=0

(αkαn−k)s
2n+2 = 1 + 2a2(s),

β′(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1− 2
∞∑
n=0

n∑
k=0

βkβn−ks
2n+2 = 1− 2β2(s).

I.e.

α′(s) = 1 + 2a2(s), α(0) = 0, (11)

β′(s) = 1− 2β2(s), β(0) = 0.

Thus

α(s) =
1√
2

tan(
√

2s), β(s) = − 1√
2

tanh(
√

2s).

If T < π
2
√
2

series are convergent (not in BMO-space) and (c, L, L⊥) is defined

as c = 1
2

ln cos(
√

2T )cosh(
√

2T ) (by calculations in the appendix),

Lt =
1√
2

∫ t

0

tan(
√

2s)WsdWs, L
⊥
t = − 1√

2

∫ t

0

tanh(
√

2s)W⊥
s W

⊥
s .

When T > π
2
√
2

a local martingale L satisfying LT − 〈L〉T = 1
2

∫ T
0
W 2
t dt does

not exist (despite the fact that
∫ T
0
W 2
t dt is p-integrable for each p ≥ 1),

since from ET (2L) = e
∫ T
0 W 2

t dt follows that Ee
∫ T
0 W 2

t dt = EET (2L) ≤ 1, which

contradicts to Ee
∫ T
0 W 2

t dt =∞ (see appendix).
In the next example exact solution of (5) also exists, however it does not

belong to the extreme cases considered in [9],[10].
Example 2. Let α = −1, γ = 2, η̄ = 0, At =

∫ t
0
WsW

⊥
s ds, F =

(FW,W
⊥

t ), where W,W⊥ is a 2-dimensional Brownian motion. Then (5) be-
comes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +

∫ T

0

WsW
⊥
s ds.
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We have

L
(0)
T = EL

(0)
T +

∫ T

0

(T − s)W⊥
s dWs, L

(0),⊥
T = EL

(0),⊥
T +

∫ T

0

(T − s)WsdW
⊥
s ,

L
(n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.

We assert that

L
(n)
T = EL

(n)
T +

∫ T

0

(T − s)2n+1(αnWt + βnW
⊥
s )dWs,

L
(n)⊥
T = EL

(n)⊥
T +

∫ T

0

(T − s)2n+1(βnWt − αnW⊥
s )dW⊥

s ,

where α0 = 0, β0 = 1 and

αn+1 =
2

2n+ 3

n∑
k=0

(αkαn−k − βkβn−k), βn+1 =
4

2n+ 3

n∑
k=0

αkβn−k, n ≥ 0.

Indeed,

L
(n+1)
T + L

(n+1)⊥
T = cn

+
n∑
k=0

∫ T

0

(T − s)2n+2(αkWs + βkW
⊥
s )(αn−kWs + βn−kW

⊥
s )ds

−
n∑
k=0

∫ T

0

(T − s)2n+2(βkWs − αkW⊥
s )(βn−kWs − αn−kW⊥

s )ds

=
n∑
k=0

∫ T

0

(T − s)2n+2[(αkαn−k − βkβn−k)W 2
s − (αkαn−k − βkβn−k)W⊥2

s

+2(αkβn−k + βkαn−k)WsW
⊥
s ]ds+ cn, n ≥ 0.
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Using representation of integrands by stochastic derivatives we get

(T − t)2n+3(αn+1Wt + βn+1W
⊥
t )

= E[Dt(
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ]

∫ T

t

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ],

(T − t)2n+3(βn+1Wt − αn+1W
⊥
t )

= E[D⊥t (
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt]

∫ T

t

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt].

Equalising coefficients at W,W⊥ we obtain the desired formula. One can
be checked that limn→∞

n
√
|an| = 0, limn→∞

n
√
|bn| = 0. Introducing α(s) =∑∞

n=0 αns
2n+1, β(s) =

∑∞
n=0 βns

2n+1 one obtains

Lt = L0 +

∫ t

0

(α(T − s)Ws + β(T − s)W⊥
s )dWs,

L⊥t = L⊥0 +

∫ t

0

(β(T − s)Ws − α(T − s)W⊥
s )dW⊥

s .

On the other hand we can derive ODE for the pair (α, β)

α′(s) = 2α2(s)− 2β2(s), α(0) = 0, (12)

β′(s) = 1 + 4α(s)β(s), β(0) = 0.
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Indeed

α′(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 2
∞∑
n=0

n∑
k=0

(αkαn−k − βkβn−k)s2n+2 = 2a2(s)− 2β2(s),

β′(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1 + 4
∞∑
n=0

n∑
k=0

αkβn−ks
2n+2 = 1 + 4α(s)β(s).

The equation (12) is easy to solve, if we pass to the equation for complex-
variable function ζ(s) = α(s) + iβ(s)

ζ ′(s) = i+ 2ζ2(s), ζ(0) = 0.

It is obvious that ζ(s) = 1
1−i tan((1 + i)s) is a solution. We have

ζ(s) =
1

2
(1 + i)

sin((1 + i)s) cos((1− i)s)
| cos((1 + i)s)|2

=
1

4
(1 + i)

sin(2s) + i sinh(2s)

| cos((1 + i)s)|2

=
1

4

sin(2s)− sinh(2s) + i(sin(2s) + sinh(2s))

cos2(s) cosh2(s) + sin2(s) sinh2(s)
.

Finally we can write explicit solution

α(s) =
1

4

sin(2s)− sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)
,

β(s) =
1

4

sin(2s) + sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)

of (12) and conclude that it exists on whole [0,∞), since the denominator
does not vanish.

A Appendix

The formula Ee−T
2
∫ 1
0 W

2
t dt = 1√

cosh(
√
2T )

is derived in [7]. Similarly we can

prove

12



Proposition 3.

Ee
∫ T
0 W 2

t dt =


1√

cos(
√
2T )
, if T < π

2
√
2

∞, if T ≥ π
2
√
2

.

Proof. Let en(t) be orhonormal basis in L2[0, 1]. Then Ee
∫ T
0 W 2

t dt =

EeT
2
∫ 1
0 W

2
t dt = EeT

2
∑∞
n=1(

∫ 1
0 en(t)Wtdt)2 = E

∏∞
n=1 e

T 2(
∫ 1
0 en(t)Wtdt)2 . Since

E(

∫ 1

0

en(t)Wtdt)(

∫ 1

0

em(t)Wtdt) =

∫ T

0

en(t)

∫ T

0

(t ∧ s)em(s)dsdt

it is convenient to use the orthonormal basis of eigenvectors of the opera-
tor

∫ T
0

(t ∧ s)f(s)ds in L2[0, 1]. From λf(t) =
∫ T
0

(t ∧ s)f(s)ds follows that
λf ′′(t) = −f(t), f(0) = 0, f ′(1) = 0. The function sinµπt satisfies these
conditions iff µ2 = 1/λ, cosµπ = 0 and µ = −1/2 + n. Thus

λn =
1

(n− 1/2)2π2
, en(t) =

√
2 sin((n− 1/2)πt), n ≥ 1

and E(
∫ 1

0
en(t)Wtdt)(

∫ 1

0
em(t)Wtdt) = λn

∫ 1

0
en(t)em(t)dt = 0, n 6= m. Since

random variables (
∫ 1

0
en(t)Wtdt) are orthogonal and normal they are also

independent. Hence taking into account infinite product decomposition of
cos(
√

2t) one gets

Ee
∫ T
0 W 2

t dt =
∞∏
n=1

EeT
2(
∫ 1
0 en(t)Wtdt)2

=
∞∏
n=1

EeT
2λnW 2

1 =
∞∏
n=1

1√
1− 2T 2

(n−1/2)2π2

=

√√√√ ∞∏
n=1

1

1− 8T 2

(2n−1)2π2

=
1√

cos(
√

2T )
,

if
√

2T < π/2.
It easy to see that

E exp

(∫ π
2
√
2

0

W 2
t dt

)
= lim

T↑ π
2
√
2

E exp

(∫ T

0

W 2
t dt

)
= lim

T↑ π
2
√
2

1√
cos(
√

2T )
=∞.
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If T > π
2
√
2

then Ee
∫ T
0 W 2

t dt > Ee
∫ π

2
√
2

0 W 2
t dt =∞.

Lemma 3. Let (an)n≥0 be a solution of the system

a0 = 1, an+1 =
n∑
k=0

akan−k. (13)

Then an = 1
4n+2

(
2n+2
n+1

)
.

Proof. For the series u(λ) =
∑∞

n=0 anλ
n from (13) we get equation u(λ) =

1 + λu2(λ), with the roots u(λ) = 1
2λ

(1 ±
√

1− 4λ). The equality u(λ) =
1
2λ

(1 +
√

1− 4λ) is impossible, since decomposition of the right hand side is

starting from the term 1
λ
. Therefore, equality an = 1

4n+2

(
2n+2
n+1

)
follows from

the Taylor expansion of 1−
√

1− 4λ, since

u(λ) =
1

2λ
(1−

√
1− 4λ)

= −1

2

∑
n≥1

1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
(−4)nλn−1

=
1

2

∑
n≥1

(2− 1) · · · (2n− 2− 1)

2nn!
4nλn−1

=
1

2

∑
n≥1

(2n− 3)!!

n!
2nλn−1 =

1

2

∑
n≥1

1

2n− 1

(
2n

n

)
λn−1.

Lemma 4. There exist sequences (mi, i ≥ 1) ∈ M, (m⊥i , i ≥ 1) ∈ M⊥,

such that eη = c1
ET (m1)

ET (m⊥
1 )
E2T (m⊥1 ) and

eη = cn
ET (
∑n

i mi)

ET (
∑n

i m
⊥
i )
E2T (m

′⊥
n ), n ≥ 2, (14)

where m
′⊥
n = m⊥n − 〈m⊥n ,

∑n−1
i m⊥i 〉.

Proof. The theorem will be proved by induction. Assume (14) is valid
for n. There exist such martingales mn+1,m

⊥
n+1 that c′ET (m′n+1 + m′⊥n+1) =

E2T (m
′⊥
n ) and

m′n+1 = mn+1 − 〈mn+1,

n∑
i

,mi〉, m′⊥n+1 = m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉

14



are martingales w.r.t. E(
∑n

i mi +m⊥i ) · P. Thus

eη = cnc
′ ET (

∑n
i mi)

ET (
∑n

i m
⊥
i )
E(mn+1 − 〈mn+1,

n∑
i

mi〉+m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉)

= cn+1
ET (
∑n

i mi)ET (mn+1 − 〈mn+1,
∑n

i mi〉)
ET (
∑n

i m
⊥
i )ET (m⊥n+1 − 〈m⊥n+1,

∑n
i m

⊥
i 〉)
E2T (m⊥n+1 − 〈m⊥n+1,

n∑
i

m⊥i 〉)

= cn+1
ET (
∑n+1

i mi)

ET (
∑n+1

i m⊥i )
E2T (m

′⊥
n+1).

Remark. If we will prove the convergence of series
∑

imi,
∑

im
⊥
i , then

m⊥n → 0,m
′⊥
n → 0, E(m

′⊥
n )→ 1 and eη = c

ET (
∑∞
i mi)

ET (
∑∞
i m⊥

i )
.
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