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Section 1. The Basic Idea of the Research Project

It is well known that vast majority of the real-world optimization problems cannot be solved 

analytically in closed form since they are highly nonlinear by their intrinsic nature.

Denote 𝑉 𝑥 the real−valued Value Function of the optimization problem, where we minimize

corresponding Objective Function 𝐹 𝑥, 𝑧 over certain parametric set 𝑍 and the argument 𝑥

belongs to some domain 𝐷 of the 𝑛-dimensional Euclidean space 𝑅𝑛.

Numerical methods suggest to approximate analytically unknown Value Function 𝑉 𝑥 on a dense 

discrete subset 𝐺 of grid points by the function 𝑉 𝑥, ℎ , where 𝑥 belongs to the discrete grid set 𝐺

and the parameter ℎ shows the “denseness” of 𝐺 with respect to the domain 𝐷 and is defined as 

the smallest positive number satisfying the following condition: for arbitrary point 𝑦 belonging to 

domain 𝐷 one can find a point 𝑥 belonging to the grid set 𝐺 such that 𝑦 − 𝑥 < ℎ.

Many real-world problems also require the approximate computation of the Gradient 𝑔𝑟𝑎𝑑 𝑉 𝑥 , 

that is the vector of all partial derivatives of the function 𝑉 𝑥 . In general it turns out to be very 

difficult problem to construct sophisticated algorithm to approximate 𝑔𝑟𝑎𝑑 𝑉 𝑥 , as the 

corresponding difference quotients start wild oscillations when the parameter ℎ tends to 0 and one 

finds out soon that the latter quotients converge nowhere in the limit.



Our basic observation: The Value function 𝑉 𝑥 of the optimization problem is often convex (or semi 

convex) in multidimensional argument 𝑥 (for example, in engineering thermodynamics it is the 

Convex Envelope of the Gibbs free energy function). Therefore we should use the advantage of 

Convexity to construct convergent numerical approximations to 𝑔𝑟𝑎𝑑 𝑉 𝑥 .

Our basic idea: Assume that 𝑉 𝑥 is a convex function. Replace the approximation 𝑉 𝑥, ℎ by some 

convex approximation C 𝑥, ℎ in a hope that the latter one will better imitate the shape of the 

unknown convex function 𝑉 𝑥 and hence the gradient grad C 𝑥, ℎ can be announced as the 

reasonable approximation to the unknown 𝑔𝑟𝑎𝑑 𝑉 𝑥 !

The clever choice of convex approximation consists in constructing the so called Discrete Convex 

Envelope denoted by 𝐷 𝑐𝑜𝑛𝑣 𝑉 𝑥, ℎ of the function 𝑉 𝑥, ℎ , which is defined on a domain 𝐷 as the 

maximal convex function dominated by the function 𝑉 𝑥, ℎ on a discrete set of grid points 𝐺. The 

construction of the discrete convex envelope is carried out by several algorithms in computational 

geometry and most popular among them is QHULL (the quick hull algorithm for convex hulls), which 

finds the convex hull of arbitrary finite set of points in 𝑛- dimensional Euclidean space 𝑅𝑛 and the 

discrete convex envelope is obtained as a “lower part” of the corresponding convex hull !



Our basic idea seems intuitively reasonable, but it needs rigorous mathematical justification. The 

latter justification has been given in our published paper 

Shashiashvili K., Shashiashvili M. From the uniform approximation of a solution of the PDE to the  

𝐿2-approximation of the gradient of the solution. J. Convex Anal. 21 (2014), no. 1, 237-252, 

where we have given rigorous mathematical justification of our intuitive arguments proving new 

type reverse Poincare inequalities for the difference of two semi convex functions as well as for the 

difference of two convex envelopes of arbitrary continuous objective functions not assuming even 

existence of first order partial derivatives of the latter functions, see Proposition 3.2 and Theorem 3.3 

therein.



Section 2. Convex Envelope Animations











Section 3. The 𝑳𝟐-Approximation of the Gradient of the Semiconvex Function 

through the Convex Envelope

Let 𝑢:𝐷 → 𝑅 be analytically unknown viscosity solution of the nonlinear second order elliptic partial 

differential equation

𝐹 𝑥, 𝑢, 𝑔𝑟𝑎𝑑 𝑢, 𝐻𝑒𝑠𝑠 𝑢 = 0 (3.1)

in a bounded open convex subset 𝐷 of 𝑅𝑛.

As pointed out in the introduction the solution of the equation (3.1) turns out to be semiconvex (or 

semiconcave) function if the latter equation is related to different kind of optimization problems.

Suppose the bounded viscosity solution 𝑢 of equation (3.1) is semiconvex function and we are given 

its uniform continuous numerical approximation 𝑢𝛿: 𝐷 → 𝑅, where 𝛿 is a small parameter, which 

typically measures the mesh size. The objective consists in constructing interior 𝐿2-approximation of 

the unknown Sobolev gradient 𝑔𝑟𝑎𝑑 𝑢 based  on the uniform approximation 𝑢𝛿. Moreover, it  is 

desirable to estimate the gradient’s 𝐿2-error through the 𝐿∞ 𝐷 -uniform error of approximation.

We shall see in this section that such a construction is possible and it uses two ingredients: the energy 

inequality (2.5) in Shashiashvili M. and Shashiashvili K. [9] and the notion of the convex envelope.



The convex envelope 𝑐𝑜𝑛𝑣 𝑢 of a bounded continuous function 𝑢 in 𝐷 is defined as the supremum 

of all convex functions which are majorized by the function 𝑢

𝑐𝑜𝑛𝑣 𝑢 = sup 𝑣 𝑥 : 𝑣 𝑥 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑛 𝐷, 𝑣 𝑥 ≤ 𝑢 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐷 . 3.2

The mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 possesses some nice properties which we prove below

Lemma 3.1. The mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 has Lipschitz property

𝑐𝑜𝑛𝑣 𝑢 − 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 ≤ 𝑢 − 𝑣 𝐿∞ 𝐷 3.3

If only 𝑢, 𝑣 belong to 𝐶 𝐷 ∩ 𝐿∞ 𝐷 .

Proof. Denote

𝑑 = 𝑢 − 𝑣 𝐿∞ 𝐷 ,

Then we have −𝑑 ≤ 𝑢 𝑥 − 𝑣 𝑥 ≤ 𝑑, i.e. 𝑣 𝑥 − 𝑑 ≤ 𝑢 𝑥 , 𝑢 𝑥 − 𝑑 ≤ 𝑣 𝑥 .

Hence we have

𝑐𝑜𝑛𝑣 𝑣 − 𝑑 ≤ 𝑢, 𝑐𝑜𝑛𝑣 𝑢 − 𝑑 ≤ 𝑣.

This means that the convex functions 𝑐𝑜𝑛𝑣 𝑣 − 𝑑 and 𝑐𝑜𝑛𝑣 u − 𝑑 are majorized respectively by 𝑢, 𝑣 .

By the definition of the convex envelope we obtain

𝑐𝑜𝑛𝑣 𝑣 − 𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑢 , 𝑐𝑜𝑛𝑣 𝑢 − 𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑣 ,

i.e. −𝑑 ≤ 𝑐𝑜𝑛𝑣 𝑢 𝑥 − 𝑐𝑜𝑛𝑣 𝑣 𝑥 ≤ 𝑑, thus we derive the inequality (3.3). 



Taking successively 𝑢 = 0 and 𝑣 = 0 in (3.3) we get

ቊ
𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 ≤ 𝑣 𝐿∞ 𝐷 ,

𝑐𝑜𝑛𝑣 𝑢 𝐿∞ 𝐷 ≤ 𝑢 𝐿∞ 𝐷 .
(3.4)

Proposition 3.2. On the space 𝐶 𝐷 ∩ 𝐿∞ 𝐷 the mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 possesses the following

important property

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑣 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥 ≤ 5𝑚𝑒𝑎𝑠 𝐷 ∙ 𝑢 − 𝑣 𝐿∞ 𝐷 𝑢 𝐿∞ 𝐷 + 𝑣 𝐿∞ 𝐷 . 3.5

Proof. We have from the bound (3.4) that the convex functions 𝑐𝑜𝑛𝑣 𝑢 and 𝑐𝑜𝑛𝑣 𝑣 are bounded, 

thus we can apply the energy inequality (2.5) for the latter convex functions and get

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑣 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 ∙ 𝑐𝑜𝑛𝑣 𝑢 − 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 𝑐𝑜𝑛𝑣 𝑢 𝐿∞ 𝐷 + 𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 . 3.6

The assertion follows after application of Lemma 3.1 and the bound (3.4). 



Consider now the bounded viscosity solution 𝑢 of the equation (3.1) which is assumed to be 

semiconvex with semiconvexity constant 𝑐 ≥ 0 and its uniform continuous numerical approximation 

𝑢𝛿, i.e.

𝑢𝛿 − 𝑢 𝐿∞ 𝐷 𝛿⟶0
0. 3.7

Further consider the bounded continuous functions

𝑢 + 𝑐 ∙ 𝑣0 and 𝑢𝛿 + 𝑐 ∙ 𝑣0 (3.8)

and their convex envelopes

conv 𝑢 + 𝑐 ∙ 𝑣0 and 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 , (3.9)

where

𝑣0 𝑥 =
1

2
∙ 𝑥 2.

The next proposition is the main result of Section 3.



Theorem 3.3. The following weighted 𝐿2-estimate is valid for the unknown 𝑔𝑟𝑎𝑑 𝑢 through the function 

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑐 ∙ 𝑣0

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑐 ∙ 𝑣0 − 𝑔𝑟𝑎𝑑 𝑢 2 ∙
𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 2 𝑢 𝐿∞ 𝐷 + 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 + 2𝑐 𝑣0 𝐿∞ 𝐷 . (3.10)

Proof. Let us apply Proposition 3.2 to the functions uδ + c ∙ v0 and 𝑢 + 𝑐 ∙ 𝑣0 , we shall have

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0
2 ∙

𝑑𝜕𝐷
2

𝑛
𝑑𝑥

≤ 5𝑚𝑒𝑎𝑠 𝐷 𝑢𝛿 − 𝑢 𝐿∞ 𝐷 𝑢𝛿 + 𝑐 ∙ 𝑣0 𝐿∞ 𝐷 + 𝑢 + 𝑐 ∙ 𝑣0 𝐿∞ 𝐷 . (3.11)

By the semiconvexity criteria (2.3) in Shashiashvili M. and Shashiashvili K. [9] we have that the function

𝑢 + 𝑐 ∙ 𝑣0 is convex and therefore coincides with its convex envelope 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0 , hence we get

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 + 𝑐 ∙ 𝑣0 = 𝑔𝑟𝑎𝑑 𝑢 + 𝑐 ∙ 𝑣0 = 𝑔𝑟𝑎𝑑 𝑢 + 𝑔𝑟𝑎𝑑 𝑐 ∙ 𝑣0 ,

the rest is obvious. 

Thus the 𝐿2-approximation problem of the unknown 𝑔𝑟𝑎𝑑 𝑢 is reduced to the efficient numerical 

computation of convex envelope 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 and its gradient. We note here that if the solution of 

PDE (3.1) is convex the unknown 𝑔𝑟𝑎𝑑 𝑢 is approximated by the 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢𝛿 .



Section 4. Computation of the Gradient of the Solution of Monge-Ampere 

Partial Differential Equation in a Planar Domain

We discuss next the Monge-Ampere equation. The Monge-Ampere equation is a fully nonlinear elliptic 

PDE. Applications of the Monge-Ampere equation appear in the classical problem of prescribed 

Gauss curvature and in the problem of optimal mass transportation (with quadratic cost).

We shall present a simple (nine point stencil) finite difference method which performs well for smooth 

as well as for singular solutions. The Monge-Ampere PDE in a planar domain 𝐷 ⊂ 𝑅2 is the following

𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 𝑈 𝑥 = 𝑓 𝑥 , 𝑓 𝑥 ≥ 0,

or equivalently

𝜕2𝑢

𝜕𝑥2
∙
𝜕2𝑢

𝜕𝑦2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦

2

= 𝑓 with Dirichlet boundary conditions 𝑢 = 𝑔 on 𝜕𝐷 (4.1)

and the additional convexity constraint

𝑢 𝑥, 𝑦 is convex in 𝐷, (4.2)

which is required for the equation to be elliptic. Without the convexity constraint this equation does 

not have a unique solution. For example, taking the boundary function 𝑔 = 0, if 𝑢 is a solution, then −𝑢

is also a solution.



The numerical method involves simply discretizing the second derivatives using standard central 

differences on a uniform Cartesian grid. The result is

𝐷𝑥𝑥
2 𝑢𝑖𝑗 ∙ 𝐷𝑦𝑦

2 𝑢𝑖𝑗 − 𝐷𝑥𝑦
2 𝑢𝑖𝑗

2
= 𝑓𝑖𝑗 , (4.3)

where

𝐷𝑥𝑥
2 𝑢𝑖𝑗 =

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 − 2𝑢𝑖𝑗

ℎ2
,

𝐷𝑦𝑦
2 𝑢𝑖𝑗 =

𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 2𝑢𝑖𝑗

ℎ2
,

𝐷𝑥𝑦
2 𝑢𝑖𝑗 =

𝑢𝑖+1,𝑗+1 + 𝑢𝑖,𝑗−1 − 𝑢𝑖−1,𝑗+1 − 𝑢𝑖−1,𝑗−1

4ℎ2
.

(4.4)

Introduce the notation

𝑎1 =
𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗

2
, 𝑎2 =

𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1

2
, 𝑎3 =

𝑢𝑖+1,𝑗+1 + 𝑢𝑖,𝑗−1

2
, 𝑎4 =

𝑢𝑖−1,𝑗+1 + 𝑢𝑖−1,𝑗−1

2
(4.5)

and rewrite (4.3) as a quadratic equation for 𝑢𝑖𝑗:

4 𝑎1 − 𝑢𝑖𝑗 𝑎2 − 𝑢𝑖𝑗 −
1

4
𝑎3 − 𝑎4

2 = ℎ4𝑓𝑖𝑗 . (4.6)



Now solving for 𝑢𝑖𝑗 and selecting the smaller one (in order to select the locally convex solution), we 

obtain

𝑢𝑖𝑗 =
1

2
𝑎1 + 𝑎2 −

1

2
𝑎1 − 𝑎2

2 +
1

4
𝑎3 − 𝑎4

2 + ℎ4𝑓𝑖𝑗 . 4.7

We can now use Gauss-Seidel iteration to find the fixed point of (4.7).

The Dirichlet boundary conditions are enforced at boundary grid points. The convexity constraint 

(4.2) is not enforced (beyond the selection of the positive root in (4.7).

Next we consider two exact solutions for the Monge-Ampere PDE (4.1), (4.2) on the square

0,1 × 0,1 .



Example 4.1.

൞
𝑢 𝑥, 𝑦 = exp

𝑥2 + 𝑦2

2
,

𝑓 𝑥, 𝑦 = 1 + 𝑥2 + 𝑦2 ∙ exp 𝑥2 + 𝑦2 .

Example 4.2.

𝑢 𝑥, 𝑦 =
2 2

3
𝑥2 + 𝑦2 Τ3 4,

𝑓 𝑥, 𝑦 =
1

𝑥2 + 𝑦2
.

In this example the function 𝑓 blows up at the boundary point 0,0 .

We note that we use fast algorithm to accelerate computations in the finite difference method 

(4.3)-(4.7). 



Figure 1



Figure 2

The Monge-Ampere equations (the Examples 4.1 and 4.2) are considered on the square 0,1 × 0,1 .



In the tables below for the different grid points we compute the number of iterations, the 

computation times, the errors of approximation of the exact solution and of the exact gradient.

Computation times and errors for the exact solution and its gradient for the Example 4.1 on an 𝑁 × 𝑁

grid:

#
Number 

of iterations

Computation 

times

Uniform error 

for the exact solution

Uniform error 

for the exact 

gradient

𝑳𝟐-error 

for the exact 

gradient

21 1362 1 sec. 1.5 × 10−4 0.1255 0.011

61 10840 10 sec. 1.8 × 10−5 0.0441 0.0038

101 28764 60 sec. 6.7 × 10−6 0.0267 0.0023

141 54802 300 sec. 3.4 × 10−6 0.0192 0.0016



Computation times and errors for the exact solution and its gradient for the Example 4.2 on an grid:

#
Number 

of iterations

Computation 

times

Uniform error 

for the exact solution

Uniform error 

for the exact 

gradient

𝑳𝟐-error 

for the exact 

gradient

21 1397 1 sec. 1.5 × 10−4 0.1511 0.0077

61 11065 10 sec. 1 × 10−4 0.0887 0.0027

101 29312 70 sec. 4.9 × 10−5 0.0689 0.0016

141 55768 300 sec. 2.9 × 10−5 0.0583 0.0011



We give the surface plots (for Examples 4.1 and 4.2) of the following functions:

a) the exact solution,

b) finite difference numerical approximation,

c) the convex envelope of the numerical approximation,

d) partial derivative w.r. to 𝑥 of the exact solution,

e) partial derivative w.r. to 𝑦 of the exact solution,

f) partial derivative w.r. to 𝑥 of the convex envelope,

g) Partial derivative w.r. to 𝑦 of the convex envelope.



Section 5. Pricing and Hedging of American Options written on Multiple Assets

In this section we study the multidimensional parabolic obstacle problem and its relation to the 

pricing and hedging of American options written on multiple assets. We shall consider the so called 

strong solutions of parabolic obstacle problem that have been studied, for example, in Friedman 

[3, Chapter 1].  Strong solutions have second order Sobolev (weak) derivatives so that the Partial 

Differential Equation (PDE) can be written pointwisely a.e., strong solutions should be preferable in 

financial applications because of their better regularity properties.

The above obstacle problem appears naturally in the valuation of American type Claims in 

financial market. The obstacle is the so called payoff function and the solution of the obstacle 

problem is the value function of the American option written on multiple assets. A good 

background study is given in the paper by Broadie and Detemple [1]. 

The semiconvexity is a natural property of a large class of value functions of the optimization 

problems (see, for instance, Cannarsa and Sinestrari [2]). 

This convexity (semiconvexity) of the value function of the American option for arbitrary fixed time 

instant is the starting point of our new method of the construction of the nearly optimal discrete 

time delta hedging strategies for American options.



American option can be exercised by its holder (as an opposite to European option) at any time up 

to and including expiry. This makes their pricing mathematically challenging and few closed form 

solutions have been found. American options are important because they are very widely traded.  

At least as important as the pricing of American options are the hedging issues that are crucial for 

the writer of the option. 

In this section we study the parabolic obstacle problem in the strong sense. More precisely, we     

seek a solution 𝑢 𝑥, 𝑡 , which belongs to the parabolic Sobolev space (see, for example, Krylov [6, 

Chapter 2]) and satisfies a system of inequalities

ቊ
𝐿𝑢 𝑥, 𝑡 ≤ 0, 𝑢 𝑥, 𝑡 ≥ 𝑔 𝑥 ,

𝐿𝑢 𝑥, 𝑡 ∙ 𝑢 𝑥, 𝑡 − 𝑔 𝑥 = 0
(5.1)

𝑑𝑥 × 𝑑𝑡 with terminal condition

𝑢 𝑥, 𝑇 = 𝑔 𝑥 , (5.2)

where 𝑔 𝑥 , 𝑥 ∈ 𝑅𝑛 is a given non-negative continuous function representing an obstacle and 𝐿𝑢 is 

the second order linear parabolic differential operator

𝐿𝑢 𝑥, 𝑡 = ෍

𝑖,𝑗=1

𝑛

𝑎𝑖𝑗 𝑥, 𝑡 ∙
𝜕2𝑢 𝑥, 𝑡

𝜕𝑥𝑖𝜕𝑥𝑗
+෍

𝑖=1

𝑛

𝑏𝑖 𝑥, 𝑡 ∙
𝜕𝑢 𝑥, 𝑡

𝜕𝑥𝑖
− 𝑟 𝑡 ∙ 𝑢 𝑥, 𝑡 +

𝜕𝑢 𝑥, 𝑡

𝜕𝑡
, (5.3)



when the obstacle 𝑔 𝑥 is non-smooth there are not many known techniques to be used in the study 

of the obstacle problem. Our objective is to develop some new results for the nonsmooth case, with 

focus on applications to American type options written on multiple assets, which is an active 

research area at present in mathematical finance.

We will consider the pricing and hedging of multidimensional American options in a financial market 

driven by a general multidimensional Ito diffusion. The American option is a financial contract, 

assuming a time horizon of 𝑇 > 0 and a market consisting of 𝑛 assets 𝑆 𝑡 = 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 giving a 

payoff at time 𝑡 equal to Ψ 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 where Ψ 𝑥 is a non-negative continuous function from 𝑅+
𝑛

to 𝑅+ defining the contract. The American option corresponding to this claim gives the owner of the 

option the right (but not the obligation) to exercise the option at any time 𝜏, 0 ≤ 𝜏 ≤ 𝑇. At the 

exercise time 𝜏, the owner of the option receives an amount equal to Ψ 𝑆 𝜏 . We suppose the 

existence of a positive and continuous instantaneous interest rate 𝑟 𝑡 and also of the dividend rates 

𝑑𝑖 𝑡 of the assets 𝑆𝑖 𝑡 , 𝑖 = 1, … , 𝑛.



We assume that there exists a risk-neutral martingale measure 𝑄, such that with respect to 𝑄 the 

logarithms of the prices 𝑋 𝑡 = ln 𝑆1 𝑡 , … , ln 𝑆𝑛 𝑡 solve a system of stochastic differential 

equations

𝑑𝑋 𝑡 = 𝑏 𝑋 𝑡 , 𝑡 ∙ 𝑑𝑡 + 𝜎 𝑋 𝑡 , 𝑡 ∙ 𝑑𝑊 𝑡 , 𝑋 0 = 𝑥, 0 ≤ 𝑡 ≤ 𝑇, 5.4

where

𝑏𝑖 𝑥, 𝑡 = 𝑟 𝑡 − 𝑑𝑖 𝑡 −
1

2
෍

𝑘=1

𝑛

𝜎𝑖𝑘
2 , 𝑖 = 1, … , 𝑛, (5.5)

Here 𝑊 𝑡 = 𝑊1 𝑡 , … ,𝑊𝑛 𝑡 is a standard 𝑛- dimensional Brownian motion with respect to the 

filtration 𝔍𝑡 0≤𝑡≤𝑇 defined on a probability space Ω, 𝔍, 𝑄 , 𝜎 𝑥, 𝑡 = 𝜎𝑖𝑗 𝑥, 𝑡
𝑖,𝑗=1,…,𝑛

, where 

𝑎𝑖𝑗 𝑥, 𝑡 =
1

2
෍

𝑘=1

𝑛

𝜎𝑖𝑘 𝑥, 𝑡 ∙ 𝜎𝑗𝑘 𝑥, 𝑡 . (5.6)



We will assume that the operator 𝐿𝑢 is uniformly parabolic in the sense that there exists 𝜆 > 0 such that

෍

𝑖,𝑗=1

𝑛

𝑎𝑖𝑗 𝑥, 𝑡 ∙ 𝜉𝑖 ∙ 𝜉𝑗 ≥ 𝜆 ∙ 𝜉 2, whenever 𝑥, 𝑡 ∈ 𝑅𝑛 × 0, 𝑇 and 𝜉 ∈ 𝑅𝑛. 5.7

We will assume also that the functions 𝑏 𝑥, 𝑡 and 𝜎 𝑥, 𝑡 are bounded and Lipschitz continuous, that is, 

there exists a constant 𝑐 > 0 such that for all 𝑥, ෤𝑥 ∈ 𝑅𝑛 and 𝑠, 𝑡 ∈ 0, 𝑇 we have

𝜎 𝑥, 𝑡 − 𝜎 ෤𝑥, 𝑠 + 𝑏 𝑥, 𝑡 − 𝑏 ෤𝑥, 𝑠 ≤ 𝑐 ∙ 𝑥 − ෤𝑥 + 𝑡 − 𝑠 . (5.8)

We will impose the basic assumption on the payoff function: 

Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛 is a nonnegative Lipschitz continuous convex function. (5.9)

Denote 𝑉 𝑥, 𝑡 , 𝑥 ∈ 𝑅+
𝑛, 0 ≤ 𝑡 ≤ 𝑇, the value function of the American option at time 𝑡, if the underlying 

assets are trading at 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 = 𝑥1, … , 𝑥𝑛 . Then it is well known that 

𝑢 𝑥, 𝑡 = 𝑉 exp 𝑥 , 𝑡 , 𝑥 ∈ 𝑅𝑛, 0 ≤ 𝑡 ≤ 𝑇, 5.10

is a unique solution of the parabolic obstacle problem (5.1), (5.2) with the obstacle function  

𝑔 𝑥 = Ψ exp 𝑥 , 𝑥 ∈ 𝑅𝑛, (5.11)



The convexity (semiconvexity) of the value function 𝑉 𝑥, 𝑡 of the American option for arbitrary fixed 

time instant 𝑡 is the crucial point for our new device of the construction of the nearly optimal discrete 

time delta hedging strategies for American options written on multiple assets. 

Indeed recently in the paper by Shashiashvili M. and Shashiashvili K. [9], we have developed a novel 

devise of numerical computation of the gradient of the analytically unknown function provided that 

the latter function is convex (or semiconvex) and we have already constructed its some uniform 

approximation. It is based on a new weighted inequality in Mathematical Analysis found by us 

(called otherwise the reverse Poincare inequality) for the difference of two semiconvex functions.

In this project we investigate the discrete time hedging problem for the American option written on 

the multiple underlying assets S 𝑡 = 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 and having a nonnegative convex 

payoff function Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛.

It is a classical  mathematical result at present (see, for example, Karatzas and Shreve [5, Chapter 2]) 

that for the perfect hedging in continuous time the writer of the option should construct the so called 

delta-hedging portfolio, which means that at an arbitrary time instant the should hold 𝑔𝑟𝑎𝑑 𝑉 𝑆 𝑡 , 𝑡

units of the underlying assets, where 𝑉 𝑥, 𝑡 denotes the value function of the American option and 

𝑔𝑟𝑎𝑑 𝑉 𝑥, 𝑡 is a vector of its partial derivatives with respect to the components of its multidimensional 

space argument 𝑥, 𝑥 ∈ 𝑅+
𝑛. 



But the perfect hedging in continuous time requires the continuous rebalancing of the writer’s 

portfolio in the underlying assets and the money market account, which is impossible in practice. In 

reality, the writer trades only at some discrete instants of time at which he rebalances his portfolio. 

Moreover, the delta-hedging requires the knowledge of the gradient 𝑔𝑟𝑎𝑑 𝑉 𝑥, 𝑡 of the value 

function 𝑉 𝑥, 𝑡 , but the explicit form neither of the value function, nor of its partial derivatives is 

known even in the simplest Black-Sholes model for American put option with finite horizon 𝑇 > 0.

Several approximation methods were devised in order to compute the value function of the 

American option. In particular, finite difference methods were developed in Wilmott, Dewynne, 

and Howison [10], and Jaillet, Lamberton, and Lapeyre [4]. We assume here that we have already 

been given some continuous in the argument 𝑥 uniform approximation 𝑉ℎ 𝑥, 𝑡 to the unknown 

value function 𝑉 𝑥, 𝑡 of the American option at the equidistant rebalancing times 𝑡𝑘 = 𝑘 ∙ 𝛿, 𝛿 =
𝑇

𝑁
, 

𝑘 = 0,1, … , 𝑁 (for example, the Bermudan option value function approximation), where ℎ is a certain 

small parameter indicating the error of approximation. In particular, we assume that the following 

bound is valid uniformly in 𝑘, 𝑘 = 0,1, … , 𝑁,

sup𝑥∈𝑅+𝑛 𝑉ℎ 𝑥, 𝑡𝑘 − 𝑉 𝑥, 𝑡𝑘 ≤ 𝑐 ∙ ℎ, 𝑘 = 0,1, … , 𝑁, (5.12)

Here 𝑐 is some positive constant depending on the parameters of our model and the payoff 

function Ψ 𝑥 and we naturally assume that 

𝑉ℎ 𝑥, 𝑇 = Ψ 𝑥 , 𝑥 ∈ 𝑅+
𝑛. (5.13)



Our hedging method consists in the following:  for each function 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, consider first its  

convex envelope 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, which is the maximal convex function dominated by the 

given function 𝑉ℎ 𝑥, 𝑡𝑘 and then its gradient 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁. Now the discrete time 

hedge 𝐷𝛿,ℎ 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 can be defined in the following manner

𝐷𝛿,ℎ 𝑡 = 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ S 𝑡𝑘 , 𝑡𝑘 if 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑘 = 1, … , 𝑁 − 1 . (5.14)

Our basic idea is to use the latter discrete time hedge as a reasonable approximation to the 

unknown continuous time optimal delta-hedge    

𝐷 𝑡 = 𝑔𝑟𝑎𝑑 𝑉 𝑆 𝑡 , 𝑡 , 0 ≤ 𝑡 ≤ 𝑇. (5.15)

Denote Π𝛿,ℎ 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 the value process of the discrete time hedging portfolio and Π 𝑡 , 0 ≤ 𝑡 ≤ 𝑇, 

respectively, the value process of continuous time optimal delta-hedging portfolio. Then the error 

due to our discrete time hedge is equal to

𝐸𝑄sup0≤𝑡≤𝑇 Π𝛿,ℎ 𝑡 − Π 𝑡 . (5.16)

One of the objectives of this research project consists in estimating the latter error for American 

options written on multiple assets and proving that it converges to zero when discretization 

parameters 𝛿 and ℎ tend to zero. We should note here that this program has been successfully 

carried out in one dimensional case for Black-Sholes model in Shashiashvili and Hussain [7]. The 

estimation of the error (5.16) for multi asset American option problem will heavily rely on the 

weighted reverse Poincare inequalities in 𝑅𝑛 and 𝑅+
𝑛 and therefore proving such kind of inequalities is 

one of the objectives of this research project. We formulate the latter inequality in 𝑅𝑛.



Let 𝑈 𝑥 and 𝑉 𝑥 be two semiconvex functions in 𝑅𝑛 with the semiconvexity constants 𝑐𝑈 and 𝑐𝑉, 

respectively (see Cannarsa and Sinestrari [2, Chapter 1, Definition 1.1.1]) and 𝐻 𝑥 be a nonnegative 

twice continuously differentiable weight function. Then the following weighted reverse Poincare 

inequality should be valid (under certain conditions on 𝑈 𝑥 , 𝑉 𝑥 and 𝐻 𝑥 ) for the difference      

𝑈 𝑥 − 𝑉 𝑥

න

𝑅𝑛

𝑔𝑟𝑎𝑑 𝑈 𝑥 − 𝑔𝑟𝑎𝑑 𝑉 𝑥 2 ∙ 𝐻 𝑥 𝑑𝑥

≤ 𝑐 𝑈 − 𝑉 𝐿∞ 𝑅𝑛 න

𝑅𝑛

𝑈 𝑥 + 𝑉 𝑥 + 𝑚𝑎𝑥 𝑐𝑈 , 𝑐𝑉 ∙ 𝑥 2 ∙ Δ𝐻 𝑥 𝑑𝑥 , (5.17)

where Δ denotes the Laplace operator and 𝑐 is the absolute constant. 
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