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1 Introduction

We use a Backward Stochastic Differential Equation (BSDE) approach to
generalize the deterministic von Bertalanffy fish growth model [9], which is
widely used as a descriptive model for size-at-age data.



The von Bertalanffy model, formulated for the case of decreasing growth
with age, is a differential equation with a linearly decreasing growth rate, or

equivalently,
dL

- =
with initial condition L(ty) = 0. The solution to differential equation (1) is

K(Loo — Li), Leo>0 K >0, (1)

Ly = L[l — ettt (2)

where L., is the asymptotic upper bound of the variable under study, which
is only attained as time tends to infinity; « is the curvature parameter, or
von Bertalanffy growth rate, which determines the speed at which the fish
approaches L, and tq - denotes the (theoretical) time at which the fish has
zero length and can take negative values.

A general expression for the von Bertalanffy curve, also called “general-
ized von Bertalanffy growth curve” (see [1], [5], [7] and references therein),
is

W, = W[l — e K-t (3)

where the parameter p can be known or unknown. For example, the value
p = 1 corresponds to the von Bertalanffy growth curve (2) and is mainly used
for modeling the length variable whereas a generalized version, including a
new parameter p > 1, allows for modeling both length and weight for some
animal species in both isometric (p = 3) and allometric (p # 3) situations.
However, although the deterministic von Bertalanffy model may reasonably
represent the mean growth pattern of a population, it ignores both environ-
mental shocks and genetic heterogeneity, which are fundamental components
of real biological processes. To account for stochasticity, several authors have
introduced random perturbations or stochastic growth increments.

Several stochastic length and weight growth models are available in the
literature. Some individual-based stochastic models of growth (see, e.g., [2],
[3] ) are proposed using stochastic differential equations of the type

t t
L; = Ly —|—/ a(s, Lg)ds +/ o (s, Ls)dWs,
0 0

where L; is the size at time ¢, a(t, L;) characterizes the deterministic in-
trinsic growth of the individual, o (¢, L;) gives the magnitude of the random
fluctuations and W; is a Brownian Motion.



In [2] and [3], individual-based stochastic models of growth are proposed
using stochastic differential equations. In particular, Lv and Pitchford [3]
consider three different stochastic models for fish length with a constant
asymptotic length, two of which are linear. In all these models, the mean
growth of length follows the von Bertalanfty growth function. For example, in
the first model proposed by [3], the fish length is described by the stochastic
differential equation

whose unique solution is
Li=Lo(1—-& (—as+oB)), (5)

where a, 0, L, are constant, B is a Brownian motion and &(X) denotes the
stochastic exponential of the semimartingale X.

In this formulation, stochasticity acts multiplicatively on the growth rate,
introducing random fluctuations around the deterministic von Bertalanfty
trajectory while preserving its mean behavior. Specifically, the drift term
ensures that the expected length F L, still satisfies the deterministic von
Bertalanffy equation, whereas the diffusion term, scaled by o, is intended to
account both for the environment and the inter-individual variability.

Russo et al. [8] proposed a growth model for fish (and other animals)
in which growth is modeled as the solution of a linear stochastic differential
equation driven by a Lévy process with positive jumps (a subordinator).
The unique solution of this equation is the stochastic exponential of the
Lévy process. The model exhibits several desirable features and is the first
stochastic growth model with increasing paths, thus yielding a more realistic
stochastic description of individual growth.

The model in Russo et al. [8] is given by the process Y;, which is the
solves the stochastic differential equation (SDE)

dY; = (Loo - Y;ff)dXt (6>

with initial condition Ly = 0, where X, is a subordinator.
If the process X cannot make jumps larger than 1 (which is natural to
assume in this context), then the solution of this equation is

Ly = Loo(1 = &(=X)), (7)



where &(—X) denotes the stochastic exponential of the process —X and
the extreme length L., is assumed to be constant. Observe that the pro-
cess L; defined by (7) is non-decreasing, and it reduces to the classical von
Bertalanffy growth curve when X is a deterministic subordinator of the form
X, = kt.

This approach, like all existing ones, has a drawback as a growth model,
since the asymptotic fish length is assumed to be constant. This implies that
the variability in fish length and weight tends to vanish over time, which is
unrealistic, as it would require all individuals to converge to the same limiting
size.

To overcome this limitation, it is natural to assume that the extremal size
of a fish is itself a random variable, thereby accounting for individual vari-
ability. It is therefore appropriate to employ backward stochastic differential
equations (BSDEs), rather than forward SDEs, with a random terminal con-
dition equal to the asymptotic weight (or length) of a fish.

We shall generalize expressions (3), (5) and (7) assuming that W is
random variable and consider this variable as a boundary condition at infin-
ity of a BSDE for W, driven by a subordinator X and a Brownian Motion
B, independent of X. The linear BSDEs derived in the paper differs from
classical cases (see, e.g. [6], [4]) by considering not integrable coefficients on
the infinite time interval. We assume that the extreme weight W, (and size
L) of a fish is a random variable measurable with respect to the o-algebra
FB generated by the Brownian Motion B, i.e., that two sources of random-
ness, the random individual variability (related with W, or L.,) and the
environmental randomness (related with the process X;), are independent.
Under this assumption the BSDE takes simpler and more natural form (see
Theorem 1 and 2).

2 The Fish weight growth and BSDEs

In this section, we extend the fish growth deterministic model (3) (the
generalized von Bertalanffy model) to consider a random extremal weight
and discuss the appropriate form of the BSDEs corresponding to the model
(3) when W, is a random variable.

We first assume the asymptotic weight W, to be an integrable random



variable and to depend on a Brownian motion, that represents the stochastic-
ity in the model. In mathematical terms, we suppose W, is measurable with
respect to F2 = V;5qFP, where B is a Brownian motion and (Ff,¢ > 0) the
related filtration.

Now we construct a simple growth model with a linear dynamics which
is a solution of a BSDE. Assume that weight at-age process Y; satisfies the
linear backward equation

Y, = / Yef(s)ds + / ' 7.4B.. (8)

to to
with the boundary condition at infinity
Yo = tllrgoﬁ =Wy (9)
Suppose that f is a deterministic function that regulates weight growth. If we

require the average weight to follow the generalized von Bertalanffy model,
then the function f(¢) will be equal to

apefa(tfto)
1 — e—alt—to)

In fact, rewriting Equation (8) in the form

Y, = Wao — /too Y,f(s)ds — /too Z,dB,. (10)

and considering the expected values, we observe that expected weight-at-age
process satisfies the deterministic equation.

EY, = EW, — /oo EY,f(s)ds, (11)
t
whose solution is
EY, = EWao exp {— / " Fs)ds). (12)
t
Therefore, comparing with the von Bertlanffy model (3), we receive

EW,, exp {— / N f(s)ds} = EWo(1 — e~ t=t)yp, (13)
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which implies
—/ f(s)ds = pln(1 — e~(t=t0)),
t

Differentiating we immediately get

ape—a(t—to)

1 — ealt—t)’

ft) =

Thus, the stochastic growth model
t —a(s—tg) t
Y, :/ y, P —— d3+/ ZdB,, (14)
to to

with the boundary condition
Yo=limY;, =W, (15)
t—o0

can be interpreted as a backward extension of the von Bertalanffy model.
Moreover, its unique solution can be written explicitly as

W, = E(Wo|FP)(1 — emolt=to)yp, (16)

More exactly, the solution of the BSDE (14)-(15), which characterizes the
growth model, is the pair (Y;, Z;) given by

Yo=W,  Zi=@(1—e oy,

where W, is defined by (16) and ¢, is identified via the martingale represen-
tation

t
E(Wy|FP) = EW,, +/0 ©sdBs.

Remark that even though the coefficient ape™®*/(1 — e~**) in equa-
tion (14) is not integrable, the unique solution Y ensures that the product
Y,ape~@(s7t0) /(1 — e=(s=%)) is integrable.

Let Et be a Brownian Motion independent of B and let Fy = FtB’B be the
filtration generated by B and B.

By analogy of (2) and expression (5) of Lv and Pitchford [3], let us define
the process

W, = W (1 —&(—as+ aé))p (17)
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and consider this process as a model of weight at age evolution of a fish. For
simplicity we take here ¢y = 0.

We assume that W, is a random variable measurable with respect to
FB = v;5oFP. The possible realization due to genetic/environmental vari-
ability is mathematically represented by the information flow F; = FtB’B and
therefore the random variable that describes the weight at age W; should be
measurable with respect to F;. That is, knowing the history up to ¢ we know

the random variable W;. Mathematically, this will imply, from (17), that
Wt :E(WOO|Ft)<1—8t (—C%S+UB))p. (18)

Recalling the independence of B and B and that W, is F. 'B _measurable, we
have that E(W|F,) = E(W,|F?) and

W, = B(Ww|FP) (1 —St(—ozs—i—aé))p. (19)

Denote by ) a class of cadlag processes (Y;,t > 0), for which the family
(Y, 7 € T) is uniformly integrable, where 7T is the set of stopping times.

Equation (19) characterizes the growth model, which can be represented
as the unique solution to a specific BSDE given in the following theorem.

Theorem 1 The process W, from (19) is the unique solution, in the class
Y, of the following linear backward stochastic differential equation:

{Yt _ gf(f(QaHs +o2(p— 1)H52)Y5d3 + fot Zdes + f(f Zfdés (20)

Yoo = Woo
where the process H, takes the form H, = &(—au+0B)/(1—&,(—au+oB)).

Note that if in (20) we set p = 1 and suppose the final condition to be
constant, then the BSDE (20) can be written as

t . 5] t R
Yt:/ y, 2E(zas+0B)) ds+/ Z,dB,, Y = Lo, (21)
o 1—E&(—as+ oBy) 0

which admits the same unique solution Ly = Loo(1 — &(—as + 0B)) as the
forward SDE (4).




The backward generalization of the stochastic model (4) of Lv and Pitch-
ford [3], when L is a random variable measurable with respect to F3 where
B is a Brownian motion independent of B, is the following BSDE

t _ B t b o
yt:/ y,_o&(zas +oB)) ds+/ stBS+/ Z,dB,, (22)
o 1—-&(—as+oBs) 0 0

with the boundary condition Y, = lim;_, Y; = Lo,. The unique solution of
(22) is

Li = E(Loo|FP)(1 — &(—as + o B)),
which follows from Theorem 1 taking p = 1.

The mathematical expectation of L; follows again the von Bertalanffy
growth curve, since by independence of B and W

EL = E (B(Lo| FP)(1 — & ~as + 0 1)) ) =

= B(Lo)E(1—&(—as+0B)) = ELy(1—EE(—as+0B)) = ELy(1—e).

In the last result, we state the extension of the generalized model for the
weight at age in the model considered by Russo et al. [8] omitting the proof.
To this end, we introduce a subordinator

t
Xt:at+// zu(ds, dz) (23)
o JRy

with (positive) jumps less that 1 and denote by u the measure associated to
the jumps of the process and v its compensator. Moreover, B are indepen-
dent Brownian motions also independent of the subordinator X.

Theorem 2 Let X be the subordinator (23) and W, an integrable F5-
measurable random variable. Then the process Y; = E[W| FP](1-&(—X))"
is the unique solution, in the class ), of the following linear backward stochas-
tic differential equation

t
Yt:ozp/Y 5 d +// [(1+ H(s,z))" — 1]dsdv+
0

+ /0 t Z,dB, + /0 t /0 K(s,x)d(p —v), (24)



Yo =Wy, (25)
where H(s,z) = 2&€_(—X)/(1 — E-(—X)).
Note that if X; is a deterministic subordinator, i.e. if X; = at,a > 0,

then equation (24) coincides with equation (14) and if p = 1, the equation
(24)-(25) will be reduced to the BSDE

! E (—X) b~
Y, = Y, —————d Z.dB,
f (a—i—m)/o e (X S+/0 +
t
T / K (s,2) (1 — fi)(da, ds), (26)
0 JRy
t—o0

for the length process, with the unique solution equal to
L, = E[Loo|FP](1 - &(—X)),
where m = | R. zv(dz) is the mean jump size of the subordinator X.

The main objective of this work is theoretical, but we think that the
models developed can be of interest for practical applications. The main
novelty is the use of Backward instead of Forward SDEs, which is due to the
assumption of the randomness of the extreme length of the fish. Our growth
model differs from the one proposed by Russo et al [8] in that the extreme
length L is replaced by its conditional mathematical expectation E(Ly|F})
and coincides with the model of Russo et al [8] if the terminal length is a
constant. Since E(Ly|F}) is the best estimation of L., in mean square sense,
we expect that this model will be also in accordance with the real data.
Of course, to this end the determination of the appropriate subordinator
(characterized by many very small jumps, e.g., the gamma process) and
selection of a suitable distribution for the extreme length is necessary.

The BSDE method requiers the extreme length or weight distribution
as the input data to realize simulations backward in time. This method is
applied if we know or can estimate the distribution of extreme fish length.
The distribution of an extreme fish length is often easy to establish, because



extreme value theory provides general limiting forms, extreme value distri-
butions (e.g., Weibul, Gumbel, Frechet distributions). This means that one
can often approximate the distribution of the maximum without knowing
full details of the underlying dynamics. Then it will be possible to determine
the conditional expectations and the fish length at previous time moments
by simulations backward in time.
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