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Abstract

We consider financial market with yield process of risky asset sat-
isfying the so-called structure condition and construct optimal mean-
variance robust hedging strategy for misspecified asset price process.
In particular, we study the stochastic volatility process with fully de-
fined volatility process with small randomness and misspecified asset
price process.
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1 A financial market model

Let (Q,F,F) = (F)o<i<t, P) be a filtered probability space with filtration
F satisfying the usual conditions, where T' € (0, 00] is a fixed time horizon.
Assume that Fy is trivial and Fpr = F.

There exist d 4+ 1, d > 1, primitive assets: one bond, whose price process
is assumed to be 1 at all times and d risky assets (stocks), whose R?-valued



price process X = (X;)o<i<r is a continuous semimartingale given by the
relation

dXt = dlag(Xt)th, XO > 0, (11)

where diag(X) denotes the diagonal d x d-matrix with diagonal elements
X1 ..., X% and the yield process R = (R;)o<i<r is a R-valued continuous
semimartingale satisfying the structure condition (SC). That is (see Schweizer

6]),
th - d<M>t)\t + th, RO - O7 (12)

where M = (M,)o<i<r is a Re-valued continuous martingale, M € MG 10o(P),
A = (M)o<t<r is a F-predictable Rvalued process, and the mean-variance
tradeoff (MVT) process K = (K)o<t<r of process R

~ t —~ —_—
K = / ANd(M)Ng = (N -M); <oo P-as., tel0,T]. (1.3)
0

Remark 1. Remember that all vectors are assumed to be column vectors.

Suppose that the martingale M has the form

M=0c-M, (1.4)

where M = (M;)o<i<r is a R%valued continuous martingale, M € Mg, .(P),
0 = (0¢)o<t<T 1s a d X d-matrix valued, F-predictable process with rank(o;) =
d for any t, P-a.s., the process (0, ')o<i<r is locally bounded, and

(M) = /OT o d(M),0;, < 00, P-a.s. (1.5)

Assume now that the following condition is satisfied:
There exists fixed R%-valued, F-predictable process k = (k;)o<;<r such
that
A= \o) = (o)) k. (1.6)

In this case, from (1.2) we get

AR, = d(M) N\ + dM, = 0d(M)0(0)) ks + od M,
= O't(d<M>tkt + th) (17)



and
K, :/ Nd(M) A Z/ k(o)™ oud(M)o(ap)
0 0
t
_ / Kd(M) ik, = (k- M), = K.
0

From (1.3) we have

Ki < oo, P-as. forall tel0,T]. (1.8)
Thus, if we introduce the process MY = (M)o<i<r by the relation

dM? = d{M)k; +dM,, M) =0, (1.9)

then the MVT process K = (Kt)o<t<r of R%valued semimartingale M° is
finite, and hence M? satisfies SC.
Finally, the scheme (1.1), (1.2), (1.4), (1.6) and (1.9) can be rewritten in
the following form:
dX; = diag(X;)dR;, Xo >0,
dR; = oydM?, Ry =0, (1.10)
dM§ = d{(M)k; + dM,;, My =0,

where ¢ and k satisfy (1.5) and (1.8), respectively.
This is our financial market model.

2 Stochastic volatility process with small dif-
fusion coefficient

Denote by Ball,(0,7), r € [0,00), the closed r-radius ball in the space L =
Lo (dt x dP), with the center at the origin, and let

H = {h={hy}, i,j,=1,d : h is F-predictable, d x d-matrix valued
process, rank(h)=d, h; € Ball,(0,r), r € [0,00)}.

The class H is called the class of alternatives.



Fix the value of small parameter 6 > 0, as well as d x d-matrix valued
F-predictable process 0 = (09)o<i<7, rank(c?) = d, with

T
/ 2d(M)(09) < o0 P-as.
0

Denote
As={o : 0 =0"+6h, heH}.

As an example, consider now particular case.
Let a(t,y) be a drift coefficient of volatility process. Introduce the pro-
cesses described by the following system of SDE:

dXt = Xt th, X() > O,
dR; = (0 + 6hy)dM), Ry =0, (2.1)
dY; = a(t,Y)dt + edwy, Yy=0, 0<t<T,

where
dM? = kydt + dw?,

h € H and ¢! is the center of the confidence interval of volatility, which
shrinks to

o = f2(Y)).

Here, w = (w’ w?) is a standard two-dimensional Wiener process, defined on
complete probability space (2, F, P), F* = (F}")o<i<r is the Paugmentation
of the natural filtration F}* = o(ws,0 < s < t), 0 <t < T, generated by
w, f(-) is a continuous one-to-one positive locally bounded function (e.g.,
f(z) = €*). Assume that the system (2.1) has a unique strong solution.

As a result, we get the so-called stochastic volatility process with small
randomness and misspecified asset price process.

3 Construction of optimal mean-variance ro-
bust hedging strategy
Consider the set of processes {R? (or X7), o € As}, which represents the

misspecification of asset price process.
Define the class of admissible trading strategies © = ©(a?).



Definition 1. The class © = O(0”) is a class of R%-valued F-predictable
processes 6 = (0;)o<i<r such that

T T
E / 000d(M)(c0)'0, < 00, E / 0,d(M),0, < oco. (3.1)
0 0

Let # € © be the dollar amount (rather than the number of shares)
invested in the stock X7, 0 € As. Then, for each o0 € As, the trading gains
induced by the self-financing portfolio strategy associated to # has the form

t
(0, 0) = / GdRT, 0<t<T, (3.2)
0

where R? = (RY )o<it<r is the yield process given by (1.10).
Introduce the notation

d
5= {Q ~P £ € L*(P), M"is a Q-local martingale},

and suppose that
(c.1) M # ).
Introduce the condition:

(c.2) There exists equivalent local martingale measure (ELMM) Q, such that
the density process z = 29 satisfies the reverse Holder inequality Ro(P),
see definition in [4].

It is well-known, that under the conditions (c.1) and (c.2) the density
process z = (2;)o<t<r of the variance-optimal ELMM satisfies Ro(P) as well,
see Delbaen et al. [1].

Now under the conditions (c.1) and (c.2) the r.v. Gp(o,0) € L*(P),
Vo € As, and the space Gp(o,0) is closed in L*(P), Vo € As (see, e.g.,
Theorem 2 of Rheinlédnder and Schweizer [4]).

Remark 2. 1. Condition EfOT 0,d(M),0; < oo from (3.1) is equivalent to
the condition £ fOT 0, hid(M):h,0; < 0o, Vhy € H, since each component (h;;)
of matrix h is bounded (by ), and H contains the constants.

2. Under conditions (c.1) and (c.2),

T 2 T
E( / \e;a§d<M>tkt|> < const. E / 060 (M) ,(00)'6,
0 0
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and

T 2 T
E(/ yeéhtd<M>tkt|) S COHSt.E/ thtd(]\/[ﬁh;@t
0 0
T
< const.E/ O,d(M),0,, Vh, € H,
0

as it follows from above mentioned Theorem 2 of [4] (namely, from the equal-
ity © := L*(M) N L*(A) = L*(M)) and definition of class H.

A contingent claim is an Fpr-measurable square-integrable r.v. H, which
models the payoff from a financial product at the maturity date T

The problem we are interested in is to find the robust hedging strategy
for a contingent claim H in the above described incomplete financial market
model with misspecified asset price process X7, o € Ay, using mean-variance
approach.

For each o € A, the total loss of a hedger, who starts with the initial
capital x, uses the strategy 6, believes that the stock price process follows
X7, and has to pay a random amount H at the date T, is H — x — G'r(0,0).

Denote

J(0,0) = E(H —x — Gr(0,0))* (3.3)

One setting of the robust mean-variance hedging problem consist in solv-
ing the optimization problem

minimize sup J(o,0) over all strategies 6 € ©. (3.4)
ocEAs

We “slightly” change this problem using the approach developed in Toron-
jadze [7] which based on the following approximation

sup J(0,0) = exp { sup J (¢° + 6h, 9)}

o€As heH
= [moer s 27550] )
— 7(0°,0) exp {5225 %22)9)}
where
DI 0) = 7100+ 0,0)| =ty LTI T (D)



is the Gateaux differential of the functional J at the point ¢ in the direc-
tion h.

Approximate (in leading order §) the optimization problem (3.4) by the
problem

. DJ(aO,hﬁ)}
0 0 ) - ' 7/
minimize J (0", 0) exp { 21612 T (09, 0)

over all strategies 6 € ©. (3.5)

Note that each solution 6* of the problem (3.5) minimizes J (¢, ) under
the constraint

DJ(0° h,0 DJ(0°, h, 6"

hen  J(0%,6) nern  J(0%,0%)

This characterization of an optimal strategy 6* of the problem (3.5) leads
to the

Definition 2. The trading strategy 6* € O is called optimal mean-variance
robust trading strategy against the class of alternatives H if it is a solution
of the optimization problem

minimize J (¢, 6) over all § € O, subject to constraint

DJ(a° h,0)
AN .

where ¢ is some generic constant.

Remark 3. In contrast to “mean-variance robust” traiding strategy, which
associates with optimization problem (3.4) and control theory, we find the
“optimal mean-variance robust” trading strategy in the sense of Definition 2.
Such approach and term are common in robust statistics theory (see, e.g.,
Hampel et al. [3], Rieder [5]).

To solve the problem (3.6), we need to calculate D7 (¢, h,0).
Following Rheinlander and Schweizer [4] and Gourieroux et al. [2], intro-
duce the probability measure ) ~ P on Fr by the relation

2

dQ = ;—T dP (and hence dQ = ;—T dP). (3.7)
0 0



Using Proposition 5.1 of Gourieroux et al. [2], we can write

20 AT
31505 (g _a [ gaam® i
- ~0 E% 0 tYt t
N H~ T ~ T M0~ 2
— 31gQ (,5—20 —a— | ¢O(o)d2 - / (wg(o—))’deo>
T 0 0 Zt
= J (0, 9", ¢, (3.8)

where
¢
Vi(o) =00, Y)(o)=2x +/ 0o dM? — Qo M), 0<t<T. (3.9)
0

Thus
Uy (0) =y (%) + 0¢r (h),  ¥)(0) =} (0°) + ¥4 (h),
where
Gr(h) = g (h) — @
Let (following Rheinlédnder and Schweizer [4])

T
L E(g'z})) + / (WY dU, + Ly (3.10)
0

zT T

be the Galtchouk-Kunita-Watanabe decomposition of r.v. %Zg w.r.t R+

valued Q-local martingale U = (% MTO,ZO)’, where 7 = (pOH LAY €

zZ) z

L2(U, Q), the space of F-predictable processes ¢ such that [¢/dU € M?(Q)

of martingales, and L € Mg,loC(Q), L is Q-strongly orthogonal to U.
Denote

=% and ¥ = (¢ ). (3.11)



Then, using (3.8), (3.9) and (3.10) we can write for each h
J(0° +8h,¢) = T (0", 4) +6 - 2%

¥ [(s-polz) - | (o) — yav | [ T@t(h))'dm}
4621 B9 [ /0 T@t(h))’dUt] 2
— J(o", ) + 525, O { / " (Wa(0®) — wflyau, / T@(h))’dUt]

r T 2
+0%Z5 BV { / (wt(h))’dUt] . (3.12)
0
Using Proposition 8 of Rheinldnder and Schweizer [4], we have for each h

T

2oy ={ [ @anyan: s < 0.0,

([ T(wxh»'dUt)Z

~ 2’2 T ?
— B9 G (h.0) = 2 BG (1. 0) = zoE( / ethf)
T 0

T 2 T T 2
0 0 0

T 2 T 2
0 0

T
< COHSt.T‘ZE/ 0,d{M),0; < oo, (3.13)
0

and hence, by (3.2),

as it follows from Remark 2.

Further,
(9] [ et - wtyaus [ @awyau] )
< E@< /O T(¢t(00) — )’dUt)2E@ /0 T@(h))’d@)2 <oo,  (3.14)
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From these estimates we conclude that:
T _
1) DI, 7) =255 B2 [ (o) = ol YdU)T ) < o0, (315)
0
thanks to (3.12), with evident notations in argument of functional DJ.
2) DJ(0°, h, v, 9)|n=0 = 0, since ¥(0) = 0 by (3.11) and (3.9). Thus

sup DJ (¢°, h,1p, ) > 0. (3.16)
heM

3) From (3.14) and (3.13) we get
(DJ(JO, h, @b,@))z < const. 7, *r?

< E9 / (6n(0®) — Y A(U)(tb0(0”) — ) E / 0,d(M) 6, < 0.

Thus DJ(6°, h, v, 1)) is estimated by the expression which does not depend
on h, and is equal to zero if we substitute ¢y (%) = w2, 0 <t <T.
Hence, by (3.16),

0< sup DJ(JO’ hawva)leIpH < sup ‘DJ(U[)? h>waa)”wEwH =0. (317>
heH heH

Further, from (3.16) it follows that we can take ¢ € [0,00) in (3.6).
Now substituting ¢ = ¥ into J(¢°,v) and DJ (c°, h,1,), we get
I(0* ") = min (0" ) = 5 (BPH —2)” + 5 BOLE
(see Lemma 5.1 of Gourieroux et al. [2]) and

su Dj(o-oahawH7$> =0
e J00gH)

Hence the constraint of problem (3.6) is satisfied.

Remark 4. If 2 = EPH and Ly =0, then we get

su =—,
hen  J@0H) 0
which is assumed to be zero, since if we consider the shifted risk func-
tional J = J + 1, the optimization problem and the optimal trading strat-
egy will not change, but DJ(c% h,vf ) = DJ(c° h,",¢p) = 0 and

J (00, H) = 1.

10



Finally, using Proposition 8 of Rheinlédnder and Schweizer [4], we arrive
at the following

Theorem. In model (1.10), under conditions (c.1) and (c.2), the optimal
mean-variance robust trading strategy (in the sense of Definition 2) is given
by the formula

07 = (o)) "™ + GOV = (YU)), 0<t<T, (3.18)
where
~ 0 /
¢tH = (@D?H,wtlﬂ), Ut = (;(t)’ J\g; E/0) 5

Y and ¢ are given by the relations (3.10) and Zr = Zy + fOT ¢ dMy, respec-
tively.

Such and related problems are considered in the papers [8, 9, 10].
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