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Abstract

Financial markets are complex, high-dimensional, and constantly evolving, pos-
ing significant challenges to traditional portfolio optimization methods. Classical
mean–variance frameworks often rely on restrictive assumptions (such as Gaus-
sian returns and static parameters estimated from historical data) that can lead
to unstable and suboptimal portfolios when markets exhibit non-linear dependen-
cies, heavy tails, or regime shifts. In this paper, we propose a novel multi-agent
simulation and model selection system (MAS2) for dynamic portfolio optimization
that addresses two key issues: (i) robust parameter estimation under limited, noisy
data, and (ii) adaptive model selection in non-stationary market conditions. In our
framework, multiple agents, each based on a distinct stochastic model class, col-
laboratively learn and adapt by generating synthetic market data, updating their
model parameters via Bayesian inference, and undergoing rigorous performance
evaluation using Bayesian model selection criteria. Poorly performing models are
iteratively pruned, and the process continues until convergence to a stable set of
models and portfolio strategies. The resulting portfolio allocations inherently ac-
count for model uncertainty and adapt to changing market dynamics, offering a
robust alternative to static single-model approaches. We present the framework
and discuss its properties; empirical assessment is left for future work.
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1 Introduction
Portfolio optimization is a central problem in quantitative finance, classically formulated
in the mean–variance framework of [5]. In this paradigm, investors trade off expected re-
turn against variance under relatively simple distributional assumptions on asset returns,
often Gaussian or more generally elliptical, and risk is summarized by the covariance
matrix. A wide range of extensions—including alternative risk measures, constraints,
and Bayesian formulations—remain conceptually anchored in this tradition; see [3] for
an overview.

In practice, however, empirical return distributions deviate markedly from these as-
sumptions. Financial time series exhibit skewness, excess kurtosis (fat tails), volatility
clustering, and regime changes that are not well captured by static, low-dimensional Gaus-
sian models. At the same time, the estimation of key inputs such as expected returns,
volatilities, and correlations is notoriously unstable when the cross-sectional dimension
of the portfolio is large relative to the available time series length. As emphasized by
[4], such misspecification and estimation error give rise to model risk: optimal alloca-
tions computed under an assumed model can be highly sensitive to its parameters and
structure, and thus perform poorly out-of-sample.

Two fundamental challenges arise from this perspective. First, there is the challenge of
robust parameter estimation under limited and unstable data. High-dimensional financial
systems with non-linear dependencies and heavy-tailed risks require estimating many
parameters (for example, in Normal–Inverse Gaussian or Heston-type specifications) from
samples that may be short, noisy, or non-stationary. Even modest estimation errors in
such settings can propagate into extreme and unstable portfolio weights. Second, there is
the challenge of adaptive model selection in non-stationary markets. Financial dynamics
evolve over time: a model that fits well in a tranquil, low-volatility regime may fail
abruptly during crises or structural breaks. No single model specification dominates
across all conditions, so a static reliance on a single “best” model exposes the investor
to substantial model risk. An effective portfolio optimization framework must therefore
both stabilize parameter estimation and continually reassess its model assumptions as
new data arrive and market regimes change.

Several strands of the literature address aspects of these issues. One line of work
tackles model uncertainty through Bayesian model averaging and Bayesian model selec-
tion, in which multiple candidate models are entertained simultaneously and combined
or compared using posterior-based criteria, such as information measures akin to DIC or
WAIC; see, for example, [1]. Another line develops robust and distributionally robust
portfolio optimization, where the investor guards against worst-case realizations over an
ambiguity set of models or distributions [2]. These approaches provide formal tools to
mitigate model risk, but they are typically formulated as static or one-shot optimization
problems and do not explicitly exploit synthetic data generation or interactive learning
between models.

In parallel, multi-agent systems and agent-based models have been widely used to
study financial markets from a bottom-up perspective, including price formation, market
microstructure, and emergent phenomena; see [6] for an overview. Most of this literature
focuses on behavioral or market-level dynamics rather than on model-driven portfolio
optimization under explicit model uncertainty.

In this paper, we propose a Multi-Agent Simulation and Model Selection System
(MAS2) that sits at the intersection of these strands. MAS2 employs an ensemble of
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autonomous agents, each associated with a distinct stochastic asset model, that jointly
learn from data and compete for relevance. At each iteration, agents are calibrated via
Bayesian inference, generate synthetic market scenarios, and are evaluated using Bayesian
model selection criteria in the spirit of [1]. Poorly performing models are pruned, while
the surviving agents’ portfolio recommendations are aggregated into a robust allocation.
In this way, MAS2 provides a dynamic, data-adaptive architecture for portfolio optimiza-
tion that explicitly targets model risk: it combines Bayesian model comparison, synthetic
data augmentation, and multi-agent interaction into a unified iterative framework. The
remainder of the paper formally defines this framework and details its algorithmic imple-
mentation; empirical assessment is left for future work.

2 Methodology: Formal Definition of the System
We formally define the Multi-Agent Simulation and Model Selection System (MAS2) as
a tuple

S = (A,L,D, T , E , C) ,
where each element represents a crucial aspect of the framework:

• A = {A1, A2, . . . , AK} is the set of K interacting agents. Each Ak is an autonomous
software agent responsible for optimizing a portfolio according to a particular model
class.

• L = {L1, L2, . . . , LK} is the set of K stochastic model classes considered (e.g.,
L1 could be a Geometric Brownian Motion model, L2 a Normal–Inverse Gaussian
model, L3 a Variance Gamma model, L4 a Heston stochastic volatility model, etc.).
Each agent Ak is associated with one model class Lk and uses it to simulate asset
dynamics and estimate riskreturn profiles.

• D = {Dreal, D
(t)
synth} denotes the family of data sources available at any iteration

t. This includes the original real-world market data Dreal and the synthetic data
D

(t)
synth generated by the agents during iteration t. At the start (t = 0), only real

data are available, so D(0) = Dreal. For t ≥ 1, D(t) denotes the combined dataset
used for calibration at iteration t, typically

D(t) = Dreal ∪D
(t)
synth.

• T (t) = {µ(t),Σ(t),Φ(t),Ψ(t)} is the collection of empirical moment tensors estimated
from the current dataset D(t). Here µ(t) is the vector of first moments (means of asset
returns), Σ(t) is the covariance matrix (second moments), Φ(t) represents third-
order central moments (skewness and co-skewness), and Ψ(t) represents fourth-
order central moments (kurtosis and co-kurtosis). These moments up to the fourth
order are tracked because the agents’ utility functions (described below) depend on
features of the return distribution beyond mean and variance.

• E is the simulation environment shared by all agents. This environment takes as
input the parameter vectors (such as Θk for agent Ak) and generates simulated asset
price paths or return scenarios via Monte Carlo methods. In essence, E codifies
the common market conditions and mechanics under which the agents operate,
providing a testing ground for their strategies using either real or synthetic data.

3



• C is the set of model evaluation criteria used for selection, such as the widely ap-
plicable information criterion (WAIC) or the deviance information criterion (DIC).
These criteria allow the system to compare models on a statistically rigorous basis,
accounting for both in-sample fit and model complexity. C guides the elimination
of poorly performing agents over the course of the simulation.

This tuple S encapsulates the architecture of our system. The agents A, each with
their model in L, interact through the environment E and update using data D; they
compute portfolio strategies based on the moments T (t); and their continued participa-
tion is determined by the criteria C. For notational simplicity, we will often omit the
superscript (t) on µ(t), Σ(t), Φ(t), and Ψ(t) when the iteration index is clear from the
context.

2.1 Model Universe and Parameterization
Each model Lk ∈ L operates on a financial universe of N assets (in our empirical im-
plementation, we consider N = 10 assets, though the framework generalizes to any N).
The model Lk provides a probabilistic description of the joint dynamics of these N as-
set returns. For instance, one model might assume that asset returns follow correlated
geometric Brownian motions (with drift and volatility parameters), while another might
assume a jumpdiffusion or heavy-tailed distributional form. We denote by Θk the vector
of parameters characterizing model Lk. This parameter vector could include, for exam-
ple, drift and volatility for each asset (in a Gaussian model), or tail thickness and skew
parameters (in a heavy-tailed model like NIG), or mean-reversion speed and volatility-
of-volatility (in a stochastic volatility model like Heston), among others.

At each iteration t, agent Ak uses Bayesian inference to update its beliefs about Θk

given the latest dataset D(t). Specifically, an MCMC routine is employed to draw samples
from the posterior distribution P (Θk | D(t)). This posterior captures the range of plau-
sible parameter values for model Lk given the observed data (both real and synthetic).
The agent can then summarize this posteriorfor instance, by taking the mean or mode
to obtain a point estimate Θ̄

(t)
k which will be used for subsequent steps such as simulation

and optimization. Using the full posterior (rather than just a point estimate) in princi-
ple allows the agent to quantify parameter uncertainty; however, for tractability in the
simulation environment E , we typically propagate a representative parameter set such as
Θ̄

(t)
k forward.

2.2 The Objective Function (Utility)
Each agent Ak is tasked with selecting an optimal portfolio allocation (weight vector)
for the N assets according to its model Lk and the current data-driven estimates of the
return distribution. Let

wk = (wk1, wk2, . . . , wkN)

denote the weight vector that agent Ak allocates to the N assets (where, for example, wki

is the fraction of capital invested in asset i by agent Ak). The agent’s goal is to maximize
a utility function

Uk(wk; T (t), γ, λ, η)

that depends on the portfolio weights, the empirical moments T (t), and preference pa-
rameters (γ, λ, η).

4



We assume that each agent Ak evaluates portfolios through a higher-moment meanvari-
anceskewnesskurtosis preference. Given a weight vector wk ∈ RN , the agent’s utility is
defined as

Uk

(
wk; T (t), γ, λ, η

)
= µp(wk) −

γ

2
σ2
p(wk) + λSp(wk) − η Kp(wk), (1)

where µp(wk) is the expected portfolio return, σ2
p(wk) its variance, Sp(wk) its skewness,

and Kp(wk) its kurtosis. The preference parameters γ > 0, λ, and η > 0 govern, respec-
tively, risk aversion to variance, preference for skewness, and aversion to kurtosis (tail
risk). For simplicity, we keep (γ, λ, η) common across agents, although they could in
principle be agent-specific.

Let R ∈ RN denote the vector of asset returns, and Rp = w>
k R the corresponding

portfolio return. The empirical moments of Rp appearing in (1) are computed from T (t)

as follows:

µp(wk) = w>
k µ, (2)

σ2
p(wk) = w>

k Σwk, (3)

m3,p(wk) =
N∑

i,j,`=1

wkiwkjwk` Φij`, (4)

m4,p(wk) =
N∑

i,j,`,m=1

wkiwkjwk`wkm Ψij`m, (5)

where m3,p and m4,p denote the third and fourth central moments of Rp. The portfolio
skewness and kurtosis are then given by

Sp(wk) =
m3,p(wk)

σ3
p(wk)

, Kp(wk) =
m4,p(wk)

σ4
p(wk)

. (6)

The inclusion of these higher moments allows the agent to express preferences such as a
liking for positive skewness and an aversion to fat tails, going beyond classical meanvari-
ance utility.

Given this specification, the optimal portfolio for agent Ak solves

w∗
k = argmax

wk

Uk

(
wk; T (t), γ, λ, η

)
, (7)

subject to appropriate portfolio constraints, such as full investment
∑N

i=1 wki = 1 and, if
desired, no short-selling wki ≥ 0. By tuning the parameters (γ, λ, η), the framework can
represent different investor preferences or regulatory requirements.

2.3 Convergence and Stable Agent Ensemble
The multi-agent system is designed such that, over successive iterations, it converges to a
stable ensemble of models and portfolio strategies. Rather than attempting a full game-
theoretic treatment, we work with an operational notion of equilibrium: a fixed point of
the iterative Bayesian updating, model selection, and portfolio optimization procedure.

To make this precise, let Θ
(t)
k denote the parameter vector of model Lk at iteration

t, and let P
(t)
k denote the corresponding posterior predictive distribution for one-period
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portfolio returns implied by agent Ak. We further denote by w
∗(t)
k the optimal portfolio

for agent Ak at iteration t, obtained by solving

w
∗(t)
k = argmax

wk

Uk

(
wk; T (t), γ, λ, η

)
, (8)

subject to the portfolio constraints.
We say that MAS2 has converged when the following conditions hold simultaneously

for all active agents over a window of recent iterations:

• Stability of posterior predictive distributions: for each surviving agent Ak,
the predictive distribution P

(t)
k changes only marginally between iterations, in the

sense that
d
(
P

(t)
k , P

(t−1)
k

)
< εP ,

where d(·, ·) is a chosen discrepancy measure (e.g., an L1 distance on predictive
densities or a set of moment-based diagnostics) and εP > 0 is a tolerance.

• Stability of portfolio recommendations: for each surviving agent Ak, the op-
timal portfolio vector changes only marginally between iterations:∥∥w∗(t)

k −w
∗(t−1)
k

∥∥
2
< εw,

for a given tolerance εw > 0.

• Stability of the active model set: the set of surviving agents A(t) does not
change over a prespecified number of iterations, i.e.,

A(t) = A(t−1) = · · · = A(t−M)

for some integer M ≥ 1.

In this regime, the system has reached a fixed point in the sense that additional rounds
of Bayesian updating, model evaluation, and synthetic data generation no longer lead to
material changes in either the predictive distributions or the portfolio allocations. The
resulting ensemble of agents can be informally viewed as an approximate equilibrium:
each surviving model is locally optimal with respect to its own utility, given the shared
data environment generated by the ensemble, and no model is eliminated by the selection
criterion.

The final portfolio w∗ implemented by MAS2 is then obtained by aggregating the sta-
bilized agent-specific portfolios; for example, one may take a simple or weighted average,

w∗ =
∑

Ak∈A(∞)

πk w
∗(∞)
k ,

where the weights πk can be chosen based on model selection scores (e.g., normalized
inverse information criteria) or set uniformly. This aggregated strategy reflects a con-
sensus of the surviving models and incorporates model uncertainty through the ensemble
structure, rather than relying on a single specification.

For clarity, the following algorithm summarizes the iterative learning and model-
selection procedure implemented in the MAS2 framework.

Algorithm: Iterative Bayesian Model Selection and Portfolio Optimization
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Input: Initial real market dataset Dreal, set of candidate models L = {L1, . . . , LK},
simulation environment E , convergence tolerances (εP , εw) and window size M .
Output: Final portfolio weights w∗ from the converged agent ensemble.

1. Initialize the iteration counter t ← 0. Initialize all agents Ak ∈ A with data
D(0) ← Dreal.

2. Compute empirical moment tensors

T (t) = {µ(t),Σ(t),Φ(t),Ψ(t)}

from the dataset D(t).

3. For each active agent Ak ∈ A, perform MCMC sampling to obtain the posterior

P (Θ
(t)
k | D

(t)),

and extract a representative parameter estimate Θ̄
(t)
k and the posterior predictive

distribution P
(t)
k .

4. For each active agent Ak, solve the optimization problem

w
∗(t)
k = argmax

wk

Uk

(
wk; T (t), γ, λ, η

)
,

subject to portfolio constraints (e.g.,
∑

i wki = 1 and wki ≥ 0 if short-selling is
disallowed).

5. For each active agent Ak, compute the model selection criterion

IC
(t)
k (e.g., WAIC),

based on D(t) and the posterior samples. Remove any agent whose criterion value
is significantly worse than a predefined threshold or dominated relative to other
agents, updating the active set A(t).

6. If only one agent remains in A(t), optionally terminate the procedure early or con-
tinue refining this single model.

7. For each remaining agent Ak, use its current parameter estimate Θ̄
(t)
k to simulate

Nsim synthetic price paths in the environment E . Store the resulting dataset as
D

(t+1)
synth .

8. Update the dataset for the next iteration, for example via

D(t+1) ← Dreal ∪D
(t+1)
synth ,

or using a weighted combination that preserves the influence of real data.

9. Increment the iteration counter: t← t+ 1.

10. Check the convergence criteria based on the stability of {P (t)
k }, {w

∗(t)
k }, and the

active set A(t) over the last M iterations. If convergence is not satisfied, return to
Step 2.

11. Once convergence is reached, construct the final robust portfolio weights w∗ (for
example, a weighted average of {w∗(t)

k } from the surviving agents at iteration t).
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3 Conclusion
We introduced MAS2, a multi-agent framework for dynamic portfolio optimization de-
signed to address two persistent challenges in quantitative finance: parameter uncertainty
and model uncertainty. By allowing heterogeneous model classes to coexist, learn, and
compete within a unified Bayesian updating and model selection loop, the framework
avoids reliance on any single probabilistic specification. Instead, MAS2 integrates multi-
ple perspectives on market dynamics and adaptively refines the set of candidate models
through iterative posterior inference and performance-based pruning.

A key feature of the system is the use of synthetic data generation to enrich the
information set available to each agent. Combined with Bayesian model comparison,
this mechanism encourages the ensemble to gravitate toward a stable subset of models
whose predictive distributions and implied portfolio allocations change only minimally
across successive iterations. The resulting fixed point represents a data-driven consensus
among the surviving agents, providing a practical notion of robustness: multiple struc-
turally distinct models agree on the return distribution and produce consistent portfolio
recommendations.

Compared with classical mean–variance or single-model approaches, MAS2 offers
greater adaptability in environments characterized by regime shifts, time-varying volatil-
ity, and heavy-tailed risks. Its iterative structure naturally accommodates new infor-
mation, recalibrates model parameters as markets evolve, and allows the active model
set to expand or contract when warranted by the data. This adaptability is essential
when standard parametric assumptions fail or become unstable, a situation frequently
encountered in real-world portfolio management.

MAS2 brings together concepts from machine learning (multi-agent systems, syn-
thetic data augmentation), Bayesian statistics (posterior inference, predictive validation,
model selection), and financial economics (utility-based portfolio choice) into a cohesive
and extensible methodology. Future work will focus on applying the framework to em-
pirical datasets, quantifying its performance relative to existing portfolio optimization
techniques, and extending it to settings that incorporate transaction costs, multi-period
decision making, and dynamic constraints. Such extensions will help assess the practical
viability and scalability of MAS2 in real-world asset management contexts.
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