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Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element in X induces the 2-summing operator,
then it is 7'—sub-Gaussian provided that X is a reflexive type 2 space. Using this result we obtain a characterization of weakly
sub-Gaussian random elements in a Hilbert space which are T'—sub-Gaussian.
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I. INTRODUCTION
Let (2,4, P) be a probability space. Following [8] (see also [3], [9], [15]) a real-valued random variable £ : Q@ — R is
sub-Gaussian if there exists a real number a > 0 such that for every real number ¢ the following inequality holds:

te 1422
Ee* <e2 ,

where [E stands for the mathematical expectation.
To each random variable £ it corresponds a parameter 7(£) € [0, +o00] defined as follows (we agree inf()) = +oo):

T(f):inf{aEO: Ee'é < 39t VteR}.

A random variable ¢ is sub-Gaussian if and only if 7(§) < 4+o00 and E¢ = 0. Moreover, if ¢ is a sub-Gaussian random variable,
then for every real number ¢
Eet€ < 6%7'2(5)752

and L
(E€?)® <7(8).

If £ is a Gaussian random variable with [E£ = 0, then £ is sub-Gaussian and
1
(E€*)* =7(¢).

Remark 1.1: [3, Example 1.2]. If £ is a bounded random variable, i.e. if for some constant ¢ € R with 0 < ¢ < 400, we
have |¢] < c a.s. and E¢ = 0, then ¢ is sub-Gaussian and 7(§) < c.

Denote by SG(2, A, P), or in short, by SG(2) the set of all sub-Gaussian random variables defined on a probability space
(Q, A,P). It is a remarkable fact that SG(Q?) is a vector space over R with respect to the natural point-wise operations;
moreover, the functional 7(-) is a norm on SG(2) (provided that random variables which coincide almost surely are identified)
and (SG(€2),7(-)) is a Banach space [2]. For £ € SG(2) instead of 7(&) we will write also [|{]|sg(q).-

More information about the sub-Gaussian random variables can be found for example in [6].

Remark 1.2: [3, Theorem 1.3] (see also [15, Proposition 2.9]). For a sub-Gaussian random variable ¢ we have
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the functional ¢ is a norm on the vector space SG(£2) and the norms 7 and ¢ are equivalent, i.e. there exist positive constants
ay and ag such that for every £ € SG(2) we have

a19(&) < 7(€) < axd(§).

In an infinite dimensional Banach space there are several notions of sub-Gaussianity. The aim of the paper is to show that
these concepts are different in general. We also give some sufficient conditions for their equivalence.

Let X be a Banach space over R with a norm || - || and X* be its dual space. The value of the linear functional z* € X*
at an element = € X is denoted by the symbol (z*, ).



Following [16, p. 88] a mapping £ : Q — X is called a random element (vector) in X if (z*,&) is a random variable for
every z* € X*.
If 0 < p < oo, then a random element £ in a Banach space X:

e has a strong p-th order, if €| is a random variable and E ||£||P < oo;
e has a weak p-th order, if E|(z*,&)|P < oo for every z* € X*;
e is centered, if £ has a weak first order and E (z*, &) = 0 for every z* € X*.

To each weak second-order centered random element £ in a separable Banach space X it corresponds a mapping ¢ : X™* —
X such that
(Y*, Rex™) =E(y*, &) (x", &), forevery z*,y" € X¥,

which is called the covariance operator of € [16, Corollary 2 (p.172)].

A random element & : Q — X is called Gaussian, if for each functional z* € X* the random variable (z*,£) is Gaussian.

A mapping R : X* — X is said to be a Gaussian covariance, if there exists a Gaussian random element in X whose
covariance operator is R.

A random element £ : Q — X will be called weakly sub-Gaussian [14], if for each * € X* the random variable (z*, ¢) is
sub-Gaussian.

A random element & : ) — X will be called T'—sub-Gaussian (or y—sub-Gaussian [5]), if there exists a probability space
(¥, A',P’) and a centered Gaussian random element 7 : ' — X such that for each z* € X*

Eelo 8 <Eel*™m (1.1)

Theorem 1.3: (a) If X is finite-dimensional Banach space, then every weakly sub-Gaussian random element in X is 7' —sub-
Gaussian.

(b) If X is infinite-dimensional separable Banach space, then there exist a weakly sub-Gaussian random element in X.
which is not T'—sub-Gaussian.

Proof: (a). See [15, Proposition 4.9].

(b). According to [14] (see also [15, Theorem 4.5]) we can find and fix a weakly sub-Gaussian random element & in X,
such that E||£|| = co. Such a random element cannot be T'—sub-Gaussian, because according to a remarkable [5, Theorem
3.4] every such random element must ’exponentially integrable’!

To every weakly sub-Gaussian random element £ : 2 — X we associate the induced linear operator

Te : X' — SG(Q)
defined by the equality:
Tex™ = (2%, &) for all 2™ € X™.

Let X and Y be Banach spaces, L(X,Y") be the space of all continuous linear operators acting from X to Y. An operator
T € L(X,Y) is called 2-(absolutely) summing if there exists a constant C' > 0 such that for each natural number n and for
every choice x1,Z2,...,Z, of elements from X we have

n 1/2 n 1/2
Sitad?]  <c s (St enl?) (1.2).
k=1 [lz* ]| x* <1 k=1

For a 2-summing T : X — Y we denote the minimum possible constant C' in (1.2) by w2 (7).
We say that a Banach space X has type 2, if there exists a finite constant C' > 0 such that for each natural number n and
for every choice x1, 22, ..., 2, of elements from X we have
2 n 1/2
2
<o (L)
k=1

/01 g:l ri(t) Tk

where 71(-),...,7,(-) are Rademacher functions on [0,1]. An example of a type 2 space is a Hilbert space as well as the
spaces I,,, L, ([0, 1]),2 < p < +o0.
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II. MAIN RESULTS
The following theorem is a slightly corrected version of [10, Theorem 1.7].

Theorem 2.1: Let X be a separable Banach space. For a weakly sub-Gaussian random element £ : 2 — X consider the
assertions:

(i) &€ is T—sub-Gaussian.

(1) T : X* — SG(Q) is a 2-summing operator.

Then:

(a) (i) = (i4);

(b) The implication (éi) = (4) is true provided that X is a reflexive Banach space of type 2.

Proof: (a) (7) implies that there exists a centered Gaussian random element 7 : ' — X such that for each z* € X* the
relation (1.1) holds. This implies that
r(Tex®) < 7(Tya*)  forall a* € X*.

Thus, as 1 is a Gaussian random element in X, the operator T}, is 2-summing (see, for example, [4]). Hence, we conclude
that (4¢) holds.

(b) Since ¢ is a weakly sub-Gaussian random element, for every x* € X* we can write:

Eel*™) < ezl Tex"15g0)

Taking into account that the operator T is 2-summing and X is reflexive, by Pietsch domination theorem (see [11] or [16,
Theorem 2.2.2]), there exists a probability measure p defined on the o (X, X*)-Borel sigma-algebra of the unit ball Bx C X
such that

||T§x*||?§g(9) < '/T%(TE) /<£L‘*’f£>2 u(dz), z*eX*.
Bx

If we consider p as a probability measure in X concentrated on By, then for every z* € X*

[ @ utdo) = [ (o 2)? n(de) = (R, %),
Bx X
where I, is the covariance operator of u. As 1 is concentrated on the bounded set, it clearly has a strong second order, and
taking into account the fact that X is a type 2 space, we obtain that R, is a Gaussian covariance (see [4, Theorem 3.1]).
Denoting 73(T)R,, = R, we get
Ee(m*,ﬁ) < e%(Rm*,z*>7 = X*,
and, thus, £ is a T'—sub-Gaussian random element as R is a Gaussian covariance. 0
Problem 2.2: Prove that the reflexivity condition for X in Theorem 2.1(b) can be removed.

Consider now the case when X = H, where H denotes an infinite-dimensional separable Hilbert space with the inner
product {-,-). As usual we identify H* with H by means of the equality H* = {(-,y) : y € H}.

From Theorem 2.1 we will derive now the following result, which is related with the similar assertion contained in [,
Proposition 3.1].

Theorem 2.3: Let H be an infinite-dimensional separable Hilbert space. For a weakly sub-Gaussian random element ¢ :
) — H the following statements are equivalent:

(¢) € is T—sub-Gaussian.

(4i,,) For each orthonormal basis (¢y) of H

> 7 ({pn €)) < 0. (2.1)

k=1

Proof: The implication (i) = (ii,,) follows from Theorem 2.1 (a).
The implication (4i,,) = (i) follows from Theorem 2.1 (b) as H is a type 2 space and according to [12] the condition
(iiy,) implies that the condition (i) of Theorem 2.1 is satisfied as well.

In connection with Theorem 2.3 naturally arises the following question: is it possible to replace the condition (ii,,) by the
following (weaker) condition?



(44 ) There is an orthonormal basis (o) of H such that

ZTZ(WIw@) < 00.
k=1

In [1, Remark 4.3] it is claimed that the answer to this question is positive.
At the end we pose another interesting question related to Theorem 2.3: does there exist a bounded centered random element
¢ in a separable infinite-dimensional Hilbert space H such that

> (W, €)) = 00
k=1

for every orthonormal bases () of H?

CONCLUSION

We have shown that in an infinite dimensional Banach space, the notions of week sub-Gaussianity and T-sub-Gaussianity
do not coincide. Sufficient conditions for their equivalence in a general, infinite dimensional Banach space is given in terms
of 2-summing induced operators.
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