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Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element in X induces the 2-summing operator,
then it is T−sub-Gaussian provided that X is a reflexive type 2 space. Using this result we obtain a characterization of weakly
sub-Gaussian random elements in a Hilbert space which are T−sub-Gaussian.
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I. INTRODUCTION

Let (Ω,A,P) be a probability space. Following [8] (see also [3], [9], [15]) a real-valued random variable ξ : Ω → R is
sub-Gaussian if there exists a real number a ≥ 0 such that for every real number t the following inequality holds:

E etξ ≤ e 1
2a

2t2 ,

where E stands for the mathematical expectation.
To each random variable ξ it corresponds a parameter τ(ξ) ∈ [0,+∞] defined as follows (we agree inf(∅) = +∞):

τ(ξ) = inf
{
a ≥ 0 : E etξ ≤ e 1

2a
2t2 , ∀t ∈ R

}
.

A random variable ξ is sub-Gaussian if and only if τ(ξ) < +∞ and Eξ = 0. Moreover, if ξ is a sub-Gaussian random variable,
then for every real number t

E etξ ≤ e 1
2 τ

2(ξ)t2

and (
Eξ2

) 1
2 ≤ τ(ξ) .

If ξ is a Gaussian random variable with Eξ = 0, then ξ is sub-Gaussian and(
Eξ2

) 1
2 = τ(ξ) .

Remark 1.1: [3, Example 1.2]. If ξ is a bounded random variable, i.e. if for some constant c ∈ R with 0 ≤ c < +∞, we
have |ξ| ≤ c a.s. and Eξ = 0, then ξ is sub-Gaussian and τ(ξ) ≤ c.

Denote by SG(Ω,A,P), or in short, by SG(Ω) the set of all sub-Gaussian random variables defined on a probability space
(Ω,A,P). It is a remarkable fact that SG(Ω) is a vector space over R with respect to the natural point-wise operations;
moreover, the functional τ(·) is a norm on SG(Ω) (provided that random variables which coincide almost surely are identified)
and (SG(Ω), τ(·)) is a Banach space [2]. For ξ ∈ SG(Ω) instead of τ(ξ) we will write also ‖ξ‖SG(Ω).

More information about the sub-Gaussian random variables can be found for example in [6].

Remark 1.2: [3, Theorem 1.3] (see also [15, Proposition 2.9]). For a sub-Gaussian random variable ξ we have

ϑ(ξ) = sup
n≥1

(
E ξ2n

)1/2n
n1/2

< +∞,

the functional ϑ is a norm on the vector space SG(Ω) and the norms τ and ϑ are equivalent, i.e. there exist positive constants
a1 and a2 such that for every ξ ∈ SG(Ω) we have

a1ϑ(ξ) ≤ τ(ξ) ≤ a2ϑ(ξ).

In an infinite dimensional Banach space there are several notions of sub-Gaussianity. The aim of the paper is to show that
these concepts are different in general. We also give some sufficient conditions for their equivalence.

Let X be a Banach space over R with a norm ‖ · ‖ and X∗ be its dual space. The value of the linear functional x∗ ∈ X∗
at an element x ∈ X is denoted by the symbol 〈x∗, x〉.
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Following [16, p. 88] a mapping ξ : Ω → X is called a random element (vector) in X if 〈x∗, ξ〉 is a random variable for
every x∗ ∈ X∗.

If 0 < p <∞, then a random element ξ in a Banach space X:

• has a strong p-th order, if ‖ξ‖ is a random variable and E ‖ξ‖p <∞;

• has a weak p-th order, if E |〈x∗, ξ〉|p <∞ for every x∗ ∈ X∗;
• is centered, if ξ has a weak first order and E 〈x∗, ξ〉 = 0 for every x∗ ∈ X∗.
To each weak second-order centered random element ξ in a separable Banach space X it corresponds a mapping Rξ : X∗ →

X such that
〈y∗, Rξx∗〉 = E 〈y∗, ξ〉〈x∗, ξ〉, for every x∗, y∗ ∈ X∗,

which is called the covariance operator of ξ [16, Corollary 2 (p.172)].
A random element ξ : Ω→ X is called Gaussian, if for each functional x∗ ∈ X∗ the random variable 〈x∗, ξ〉 is Gaussian.
A mapping R : X∗ → X is said to be a Gaussian covariance, if there exists a Gaussian random element in X whose

covariance operator is R.
A random element ξ : Ω→ X will be called weakly sub-Gaussian [14], if for each x∗ ∈ X∗ the random variable 〈x∗, ξ〉 is

sub-Gaussian.
A random element ξ : Ω→ X will be called T−sub-Gaussian (or γ−sub-Gaussian [5]), if there exists a probability space

(Ω′,A′,P′) and a centered Gaussian random element η : Ω′ → X such that for each x∗ ∈ X∗

E e〈x
∗,ξ〉 ≤ E e〈x

∗,η〉 . (1.1)

Theorem 1.3: (a) If X is finite-dimensional Banach space, then every weakly sub-Gaussian random element in X is T−sub-
Gaussian.

(b) If X is infinite-dimensional separable Banach space, then there exist a weakly sub-Gaussian random element in X .
which is not T−sub-Gaussian.

Proof: (a). See [15, Proposition 4.9].
(b). According to [14] (see also [15, Theorem 4.5]) we can find and fix a weakly sub-Gaussian random element ξ in X ,

such that E‖ξ‖ = ∞. Such a random element cannot be T−sub-Gaussian, because according to a remarkable [5, Theorem
3.4] every such random element must ’exponentially integrable’!

To every weakly sub-Gaussian random element ξ : Ω→ X we associate the induced linear operator

Tξ : X∗ → SG(Ω)

defined by the equality:
Tξx
∗ = 〈x∗, ξ〉 for all x∗ ∈ X∗.

Let X and Y be Banach spaces, L(X,Y ) be the space of all continuous linear operators acting from X to Y . An operator
T ∈ L(X,Y ) is called 2-(absolutely) summing if there exists a constant C > 0 such that for each natural number n and for
every choice x1, x2, . . . , xn of elements from X we have(

n∑
k=1

||Txk||2
)1/2

≤ C sup
||x∗||X∗≤1

(
n∑

k=1

|〈x∗, xk〉|2
)1/2

. (1.2).

For a 2-summing T : X → Y we denote the minimum possible constant C in (1.2) by π2(T ).
We say that a Banach space X has type 2, if there exists a finite constant C ≥ 0 such that for each natural number n and

for every choice x1, x2, . . . , xn of elements from X we have∫ 1

0

∥∥∥∥∥
n∑
k=1

rk(t)xk

∥∥∥∥∥
2

dt

1/2

≤ C

(
n∑
k=1

‖xk‖2
)1/2

,

where r1(·), . . . , rn(·) are Rademacher functions on [0, 1]. An example of a type 2 space is a Hilbert space as well as the
spaces lp, Lp([0, 1]), 2 ≤ p < +∞.
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II. MAIN RESULTS

The following theorem is a slightly corrected version of [10, Theorem 1.7].

Theorem 2.1: Let X be a separable Banach space. For a weakly sub-Gaussian random element ξ : Ω → X consider the
assertions:

(i) ξ is T−sub-Gaussian.

(ii) Tξ : X∗ → SG(Ω) is a 2-summing operator.

Then:

(a) (i) =⇒ (ii);

(b) The implication (ii) =⇒ (i) is true provided that X is a reflexive Banach space of type 2.

Proof: (a) (i) implies that there exists a centered Gaussian random element η : Ω′ → X such that for each x∗ ∈ X∗ the
relation (1.1) holds. This implies that

τ(Tξx
∗) ≤ τ(Tηx

∗) for all x∗ ∈ X∗ .

Thus, as η is a Gaussian random element in X , the operator Tη is 2-summing (see, for example, [4]). Hence, we conclude
that (ii) holds.

(b) Since ξ is a weakly sub-Gaussian random element, for every x∗ ∈ X∗ we can write:

E e〈x
∗,ξ〉 ≤ e

1
2 ||Tξx

∗||2SG(Ω) .

Taking into account that the operator Tξ is 2-summing and X is reflexive, by Pietsch domination theorem (see [11] or [16,
Theorem 2.2.2]), there exists a probability measure µ defined on the σ(X,X∗)-Borel sigma-algebra of the unit ball BX ⊂ X
such that

||Tξx∗||2SG(Ω) ≤ π
2
2(Tξ)

∫
BX

〈x∗, x〉2 µ(dx), x∗ ∈ X∗ .

If we consider µ as a probability measure in X concentrated on BX , then for every x∗ ∈ X∗∫
BX

〈x∗, x〉2 µ(dx) =

∫
X

〈x∗, x〉2 µ(dx) = 〈Rµx∗, x∗〉,

where Rµ is the covariance operator of µ. As µ is concentrated on the bounded set, it clearly has a strong second order, and
taking into account the fact that X is a type 2 space, we obtain that Rµ is a Gaussian covariance (see [4, Theorem 3.1]).
Denoting π2

2(T )Rµ = R, we get
E e〈x

∗,ξ〉 ≤ e 1
2 〈Rx

∗,x∗〉, x∗ ∈ X∗,

and, thus, ξ is a T−sub-Gaussian random element as R is a Gaussian covariance.

Problem 2.2: Prove that the reflexivity condition for X in Theorem 2.1(b) can be removed.

Consider now the case when X = H , where H denotes an infinite-dimensional separable Hilbert space with the inner
product 〈·, ·〉. As usual we identify H∗ with H by means of the equality H∗ = {〈·, y〉 : y ∈ H}.

From Theorem 2.1 we will derive now the following result, which is related with the similar assertion contained in [1,
Proposition 3.1].

Theorem 2.3: Let H be an infinite-dimensional separable Hilbert space. For a weakly sub-Gaussian random element ξ :
Ω→ H the following statements are equivalent:

(i) ξ is T−sub-Gaussian.

(iim) For each orthonormal basis (ϕk) of H
∞∑
k=1

τ2(〈ϕk, ξ〉) <∞ . (2.1)

Proof: The implication (i) =⇒ (iim) follows from Theorem 2.1 (a).
The implication (iim) =⇒ (i) follows from Theorem 2.1 (b) as H is a type 2 space and according to [12] the condition

(iim) implies that the condition (ii) of Theorem 2.1 is satisfied as well.

In connection with Theorem 2.3 naturally arises the following question: is it possible to replace the condition (iim) by the
following (weaker) condition?
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(iiw) There is an orthonormal basis (ϕk) of H such that
∞∑
k=1

τ2(〈ϕk, ξ〉) <∞ .

In [1, Remark 4.3] it is claimed that the answer to this question is positive.
At the end we pose another interesting question related to Theorem 2.3: does there exist a bounded centered random element

ξ in a separable infinite-dimensional Hilbert space H such that
∞∑
k=1

τ2(〈ψk, ξ〉) =∞

for every orthonormal bases (ψk) of H?

CONCLUSION

We have shown that in an infinite dimensional Banach space, the notions of week sub-Gaussianity and T-sub-Gaussianity
do not coincide. Sufficient conditions for their equivalence in a general, infinite dimensional Banach space is given in terms
of 2-summing induced operators.
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