

On Sub-Gaussianity in Banach Spaces

George Giorgobiani, Vakhtang Kvaratskhelia and Vazha Tarieladze

Muskhelishvili Institute of Computational Mathematics

of the Georgian Technical University,

Tbilisi, Georgia

emails: giorgobiani.g@gtu.ge, v.kvaratskhelia@gtu.ge, v.tarieladze@gtu.ge

Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element in X induces the 2-summing operator, then it is T -sub-Gaussian provided that X is a reflexive type 2 space. Using this result we obtain a characterization of weakly sub-Gaussian random elements in a Hilbert space which are T -sub-Gaussian.

Keywords— Sub-Gaussian random variable, Gaussian random variable, weakly sub-Gaussian random element, T -sub-Gaussian random element, Banach space, Hilbert space.

I. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Following [8] (see also [3], [9], [15]) a real-valued random variable $\xi : \Omega \rightarrow \mathbb{R}$ is **sub-Gaussian** if there exists a real number $a \geq 0$ such that for every real number t the following inequality holds:

$$\mathbb{E} e^{t\xi} \leq e^{\frac{1}{2}a^2t^2},$$

where \mathbb{E} stands for the mathematical expectation.

To each random variable ξ it corresponds a parameter $\tau(\xi) \in [0, +\infty]$ defined as follows (we agree $\inf(\emptyset) = +\infty$):

$$\tau(\xi) = \inf \left\{ a \geq 0 : \mathbb{E} e^{t\xi} \leq e^{\frac{1}{2}a^2t^2}, \quad \forall t \in \mathbb{R} \right\}.$$

A random variable ξ is sub-Gaussian if and only if $\tau(\xi) < +\infty$ and $\mathbb{E}\xi = 0$. Moreover, if ξ is a sub-Gaussian random variable, then for every real number t

$$\mathbb{E} e^{t\xi} \leq e^{\frac{1}{2}\tau^2(\xi)t^2}$$

and

$$(\mathbb{E}\xi^2)^{\frac{1}{2}} \leq \tau(\xi).$$

If ξ is a Gaussian random variable with $\mathbb{E}\xi = 0$, then ξ is sub-Gaussian and

$$(\mathbb{E}\xi^2)^{\frac{1}{2}} = \tau(\xi).$$

Remark 1.1: [3, Example 1.2]. If ξ is a bounded random variable, i.e. if for some constant $c \in \mathbb{R}$ with $0 \leq c < +\infty$, we have $|\xi| \leq c$ a.s. and $\mathbb{E}\xi = 0$, then ξ is sub-Gaussian and $\tau(\xi) \leq c$.

Denote by $\mathcal{SG}(\Omega, \mathcal{A}, \mathbb{P})$, or in short, by $\mathcal{SG}(\Omega)$ the set of all sub-Gaussian random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. It is a remarkable fact that $\mathcal{SG}(\Omega)$ is a vector space over \mathbb{R} with respect to the natural point-wise operations; moreover, the functional $\tau(\cdot)$ is a norm on $\mathcal{SG}(\Omega)$ (provided that random variables which coincide almost surely are identified) and $(\mathcal{SG}(\Omega), \tau(\cdot))$ is a Banach space [2]. For $\xi \in \mathcal{SG}(\Omega)$ instead of $\tau(\xi)$ we will write also $\|\xi\|_{\mathcal{SG}(\Omega)}$.

More information about the sub-Gaussian random variables can be found for example in [6].

Remark 1.2: [3, Theorem 1.3] (see also [15, Proposition 2.9]). For a sub-Gaussian random variable ξ we have

$$\vartheta(\xi) = \sup_{n \geq 1} \frac{(\mathbb{E}\xi^{2n})^{1/2n}}{n^{1/2}} < +\infty,$$

the functional ϑ is a norm on the vector space $\mathcal{SG}(\Omega)$ and the norms τ and ϑ are equivalent, i.e. there exist positive constants a_1 and a_2 such that for every $\xi \in \mathcal{SG}(\Omega)$ we have

$$a_1\vartheta(\xi) \leq \tau(\xi) \leq a_2\vartheta(\xi).$$

In an infinite dimensional Banach space there are several notions of sub-Gaussianity. The aim of the paper is to show that these concepts are different in general. We also give some sufficient conditions for their equivalence.

Let X be a Banach space over \mathbb{R} with a norm $\|\cdot\|$ and X^* be its dual space. The value of the linear functional $x^* \in X^*$ at an element $x \in X$ is denoted by the symbol $\langle x^*, x \rangle$.

Following [16, p. 88] a mapping $\xi : \Omega \rightarrow X$ is called a random element (vector) in X if $\langle x^*, \xi \rangle$ is a random variable for every $x^* \in X^*$.

If $0 < p < \infty$, then a random element ξ in a Banach space X :

- has a *strong p-th order*, if $\|\xi\|$ is a random variable and $\mathbb{E} \|\xi\|^p < \infty$;
- has a *weak p-th order*, if $\mathbb{E} |\langle x^*, \xi \rangle|^p < \infty$ for every $x^* \in X^*$;
- is *centered*, if ξ has a weak first order and $\mathbb{E} \langle x^*, \xi \rangle = 0$ for every $x^* \in X^*$.

To each weak second-order centered random element ξ in a separable Banach space X it corresponds a mapping $R_\xi : X^* \rightarrow X$ such that

$$\langle y^*, R_\xi x^* \rangle = \mathbb{E} \langle y^*, \xi \rangle \langle x^*, \xi \rangle, \quad \text{for every } x^*, y^* \in X^*,$$

which is called *the covariance operator of ξ* [16, Corollary 2 (p.172)].

A random element $\xi : \Omega \rightarrow X$ is called *Gaussian*, if for each functional $x^* \in X^*$ the random variable $\langle x^*, \xi \rangle$ is Gaussian.

A mapping $R : X^* \rightarrow X$ is said to be a *Gaussian covariance*, if there exists a Gaussian random element in X whose covariance operator is R .

A random element $\xi : \Omega \rightarrow X$ will be called *weakly sub-Gaussian* [14], if for each $x^* \in X^*$ the random variable $\langle x^*, \xi \rangle$ is sub-Gaussian.

A random element $\xi : \Omega \rightarrow X$ will be called *T-sub-Gaussian* (or γ -sub-Gaussian [5]), if there exists a probability space $(\Omega', \mathcal{A}', \mathbf{P}')$ and a centered Gaussian random element $\eta : \Omega' \rightarrow X$ such that for each $x^* \in X^*$

$$\mathbb{E} e^{\langle x^*, \xi \rangle} \leq \mathbb{E} e^{\langle x^*, \eta \rangle}. \quad (1.1)$$

Theorem 1.3: (a) If X is finite-dimensional Banach space, then every weakly sub-Gaussian random element in X is *T*-sub-Gaussian.

(b) If X is infinite-dimensional separable Banach space, then there exist a weakly sub-Gaussian random element in X , which is not *T*-sub-Gaussian.

Proof: (a). See [15, Proposition 4.9].

(b). According to [14] (see also [15, Theorem 4.5]) we can find and fix a weakly sub-Gaussian random element ξ in X , such that $\mathbb{E} \|\xi\| = \infty$. Such a random element cannot be *T*-sub-Gaussian, because according to a remarkable [5, Theorem 3.4] every such random element must 'exponentially integrable'!

To every weakly sub-Gaussian random element $\xi : \Omega \rightarrow X$ we associate *the induced linear operator*

$$T_\xi : X^* \rightarrow \mathcal{SG}(\Omega)$$

defined by the equality:

$$T_\xi x^* = \langle x^*, \xi \rangle \quad \text{for all } x^* \in X^*.$$

Let X and Y be Banach spaces, $L(X, Y)$ be the space of all continuous linear operators acting from X to Y . An operator $T \in L(X, Y)$ is called 2-(absolutely) summing if there exists a constant $C > 0$ such that for each natural number n and for every choice x_1, x_2, \dots, x_n of elements from X we have

$$\left(\sum_{k=1}^n \|Tx_k\|^2 \right)^{1/2} \leq C \sup_{\|x^*\|_{X^*} \leq 1} \left(\sum_{k=1}^n |\langle x^*, x_k \rangle|^2 \right)^{1/2}. \quad (1.2).$$

For a 2-summing $T : X \rightarrow Y$ we denote the minimum possible constant C in (1.2) by $\pi_2(T)$.

We say that a Banach space X has type 2, if there exists a finite constant $C \geq 0$ such that for each natural number n and for every choice x_1, x_2, \dots, x_n of elements from X we have

$$\left(\int_0^1 \left\| \sum_{k=1}^n r_k(t) x_k \right\|^2 dt \right)^{1/2} \leq C \left(\sum_{k=1}^n \|x_k\|^2 \right)^{1/2},$$

where $r_1(\cdot), \dots, r_n(\cdot)$ are Rademacher functions on $[0, 1]$. An example of a type 2 space is a Hilbert space as well as the spaces $l_p, L_p([0, 1])$, $2 \leq p < +\infty$.

II. MAIN RESULTS

The following theorem is a slightly corrected version of [10, Theorem 1.7].

Theorem 2.1: Let X be a separable Banach space. For a *weakly sub-Gaussian* random element $\xi : \Omega \rightarrow X$ consider the assertions:

- (i) ξ is T -sub-Gaussian.
- (ii) $T_\xi : X^* \rightarrow \mathcal{SG}(\Omega)$ is a 2-summing operator.

Then:

- (a) (i) \implies (ii);
- (b) The implication (ii) \implies (i) is true provided that X is a reflexive Banach space of type 2.

Proof: (a) (i) implies that there exists a centered Gaussian random element $\eta : \Omega' \rightarrow X$ such that for each $x^* \in X^*$ the relation (1.1) holds. This implies that

$$\tau(T_\xi x^*) \leq \tau(T_\eta x^*) \quad \text{for all } x^* \in X^*.$$

Thus, as η is a Gaussian random element in X , the operator T_η is 2-summing (see, for example, [4]). Hence, we conclude that (ii) holds.

- (b) Since ξ is a weakly sub-Gaussian random element, for every $x^* \in X^*$ we can write:

$$\mathbb{E} e^{\langle x^*, \xi \rangle} \leq e^{\frac{1}{2} \|T_\xi x^*\|_{\mathcal{SG}(\Omega)}^2}.$$

Taking into account that the operator T_ξ is 2-summing and X is reflexive, by Pietsch domination theorem (see [11] or [16, Theorem 2.2.2]), there exists a probability measure μ defined on the $\sigma(X, X^*)$ -Borel sigma-algebra of the unit ball $B_X \subset X$ such that

$$\|T_\xi x^*\|_{\mathcal{SG}(\Omega)}^2 \leq \pi_2^2(T_\xi) \int_{B_X} \langle x^*, x \rangle^2 \mu(dx), \quad x^* \in X^*.$$

If we consider μ as a probability measure in X concentrated on B_X , then for every $x^* \in X^*$

$$\int_{B_X} \langle x^*, x \rangle^2 \mu(dx) = \int_X \langle x^*, x \rangle^2 \mu(dx) = \langle R_\mu x^*, x^* \rangle,$$

where R_μ is the covariance operator of μ . As μ is concentrated on the bounded set, it clearly has a strong second order, and taking into account the fact that X is a type 2 space, we obtain that R_μ is a Gaussian covariance (see [4, Theorem 3.1]). Denoting $\pi_2^2(T)R_\mu = R$, we get

$$\mathbb{E} e^{\langle x^*, \xi \rangle} \leq e^{\frac{1}{2} \langle Rx^*, x^* \rangle}, \quad x^* \in X^*,$$

and, thus, ξ is a T -sub-Gaussian random element as R is a Gaussian covariance. \square

Problem 2.2: Prove that the reflexivity condition for X in Theorem 2.1(b) can be removed.

Consider now the case when $X = H$, where H denotes an infinite-dimensional separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. As usual we identify H^* with H by means of the equality $H^* = \{ \langle \cdot, y \rangle : y \in H \}$.

From Theorem 2.1 we will derive now the following result, which is related with the similar assertion contained in [1, Proposition 3.1].

Theorem 2.3: Let H be an infinite-dimensional separable Hilbert space. For a weakly sub-Gaussian random element $\xi : \Omega \rightarrow H$ the following statements are equivalent:

- (i) ξ is T -sub-Gaussian.
- (ii_m) For each orthonormal basis (φ_k) of H

$$\sum_{k=1}^{\infty} \tau^2(\langle \varphi_k, \xi \rangle) < \infty. \tag{2.1}$$

Proof: The implication (i) \implies (ii_m) follows from Theorem 2.1 (a).

The implication (ii_m) \implies (i) follows from Theorem 2.1 (b) as H is a type 2 space and according to [12] the condition (ii_m) implies that the condition (ii) of Theorem 2.1 is satisfied as well. \square

In connection with Theorem 2.3 naturally arises the following question: is it possible to replace the condition (ii_m) by the following (weaker) condition?

(ii_w) There is an orthonormal basis (φ_k) of H such that

$$\sum_{k=1}^{\infty} \tau^2(\langle \varphi_k, \xi \rangle) < \infty.$$

In [1, Remark 4.3] it is claimed that the answer to this question *is positive*.

At the end we pose another interesting question related to Theorem 2.3: does there exist a bounded centered random element ξ in a separable infinite-dimensional Hilbert space H such that

$$\sum_{k=1}^{\infty} \tau^2(\langle \psi_k, \xi \rangle) = \infty$$

for every orthonormal bases (ψ_k) of H ?

CONCLUSION

We have shown that in an infinite dimensional Banach space, the notions of week sub-Gaussianity and T-sub-Gaussianity do not coincide. Sufficient conditions for their equivalence in a general, infinite dimensional Banach space is given in terms of 2-summing induced operators.

ACKNOWLEDGMENT

The work was partially supported by the European Union's HORIZON EUROPE Grant Project GAIN.

REFERENCES

- [1] R. G. Antonini, "Subgaussian random variables in Hilbert spaces", *Rend. Sem. Mat. Univ. Padova*, vol. 98, pp. 89–99, 1997.
- [2] V. V. Buldygin and Yu. V. Kozachenko, "Sub-Gaussian random variables", *Ukrainian Mathematical Journal*, vol. 32, pp. 483–489, 1980.
- [3] V. V. Buldygin and Yu. V. Kozachenko, *Metric Characterization of Random Variables and Random Processes*. Vol. 188 American Mathematical Soc., 2000.
- [4] S. A. Chobanjan and V. I. Tarieladze, "Gaussian characterizations of certain Banach spaces", *J. Multivariate Anal.*, vol. 7, no. 1, pp. 183–203, 1977.
- [5] R. Fukuda, "Exponential integrability of sub-Gaussian vectors", *Probab. Theory Relat. Fields*, vol. 85, no. 4, pp. 505–521, 1990.
- [6] G. Giorgobiani, V. Kvaratskhelia and M. Menteshashvili, "Unconditional Convergence of Sub-Gaussian Random Series", *Pattern Recognition and Image Analysis*, vol. 34, no. 1, pp. 92–101, 2024.
- [7] G. Giorgobiani, V. Kvaratskhelia and V. Tarieladze, "Notes on sub-Gaussian random elements", *In Applications of Mathematics and Informatics in Natural Sciences and Engineering: AMINSE 2019*, Tbilisi, Georgia, pp. 197–203, Springer International Publishing, 2020.
- [8] J. P. Kahane, "Propriétés locales des fonctions à séries de Fourier aléatoires", *Studia Math.*, 19, pp. 1–25, 1960.
- [9] Kahane, Jean-Pierre. Some random series of functions. Vol. 5. Cambridge University Press, 1985.
- [10] V. Kvaratskhelia, V. Tarieladze and N. Vakhania, "Characterization of γ -Subgaussian Random Elements in a Banach Space", *Journal of Mathematical Sciences*, vol. 216, no. 4, pp. 564–568, 2016.
- [11] A. Pietsch, "Absolute p -summierende Abbildungen in normierten Räumen", *Studia Math.*, vol. 28, pp. 333–353, 1967.
- [12] W. Slowikowski, "Absolutely 2-summing mappings from and to Hilbert spaces and a Sudakov Theorem", *Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.*, vol. 17, pp. 381–386, 1969.
- [13] M. Talagrand, "Regularity of gaussian processes", *Acta Math.*, vol. 159, no. 1-2, pp. 99–149, 1987.
- [14] N. Vakhania, "On subgaussian random vectors in normed spaces", *Bull. Georgian Acad. Sci.*, vol. 163, no. 1, pp. 8–11, 2001.
- [15] N. N. Vakhania, V. V. Kvaratskhelia and V. I. Tarieladze, "Weakly sub-Gaussian random elements in Banach spaces", *Ukrainian Math. J.*, vol. 57, no. 9, 1387–1412, 2005.
- [16] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, *Probability distributions on Banach spaces*. Dordrecht: Reidel, 1987.