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რეგრესიული მიდგომის გამოყენების ზოგიერთი თავისებურება სადაზღვევო პროდუქტის სამართლიანი 

ტარიფიკაციის ამოცანაში  

ერეკლე ხუროძე 

სადაზღვევო პროდუქტის ტარიფიკაციის ამოცანაში რეგრესიული ანალიზის მეთოდების პრაქტიკაში 

დამკვიდრება რამოდენიმე ათწლეულს ითვლის (რაც რეგრესიული მიდგომის კლასიკურობის 

გათვალისწინებით ბევრი არ არის). წინამდებარე ნაშრომში განხილულია რეგრესიული მეთოდების 

გამოყენების ზოგიერთი თავისებურება, დაკავშირებული სადაზღვევო სპეციფიკასთან, რამაც 

შესაძლებელია დახმარება გაუწიოს პრაქტიკოს აქტუარებს. განსაკუთრებული ყურადღება 

გამახვილებულია ნორმირებულ შეფასებაზე, რომელიც, იდეის სიმარტივის მიუხედავად, ვფიქრობ არ არის 

საკმარისად განხილული აქტუარულ ლიტერატურაში, მაშინ, როდესაც მისი პრაქტიკული ღირებულება 

საკმაოდ დიდია, რაზეც ქვევით ვისაუბრებ. 

სიცხადისთვის განვიხილოთ მხოლოდ ქონებრივი დაზღვევა და თავდაპირველად შევთანხმდეთ 

ზოგიერთ განსაზღვრებასა თუ აღნიშვნაზე: 𝑆𝑖-ით აღვნიშნოთ (პირობითად 𝑖-ური პოლისის შესაბამის) 

სადაზღვევო თანხა (როგორც წესი, დაზღვეული ობიექტის ღირებულება), ხოლო 𝑅𝑖-ით სადაზღვევო 

ტარიფი, ანუ სადაზღვევო ლიმიტის ერთი ერთეულის დაზღვევის ღირებულება. შესაბამისად, 𝑃𝑖 = 𝑅𝑖 ⋅ 𝑆𝑖 

არის სადაზღვევო პრემია, რომელიც თავის მხრივ შედგება ე.წ. რისკ-პრემიისგან და დატვირთვისგან: 𝑃𝑖 =

𝑃𝑖
(𝑟)

+ 𝑃𝑖
(𝑙)

= 𝑅𝑖
(𝑟)

𝑆 + 𝑅𝑖
(𝑙)

𝑆. გარდა ამისა, 𝐿𝑖𝑗 არის შემთხვევითი სიდიდე, დამოკიდებული 𝑆𝑖-ზე, 

რომლისთვისაც 𝑠𝑢𝑝𝑝(𝐿𝑖𝑗) = (0,  𝑆] და რომელიც გამოხატავს 𝑖-ური პოლისზე 𝑗-ური (𝑗 ≥ 1) სადაზღვევო 

შემთხვევის შედეგად დამდგარი ზარალის სიდიდეს, რომლისთვისაც: 

supp(𝐿𝑖𝑗) = (0,  𝑆𝑖 − ∑ 𝐿𝑖𝑘

𝑗−1

𝑘=0
], 

სადაც, 𝐿𝑖0 ≡ 0 თითქმის აუცილებლად.  

პრაქტიკული მიზნებიდან, 𝐿𝑖𝑗-ს ნაცვლად, როგორც წესი განიხილავენ სიდიდეს  

𝐿̅𝑖𝑗 = min (𝐿𝑖𝑗, 𝑙0(𝑆𝑖)) + 𝟙[𝑙0(𝑆𝑖),𝑆𝑖](𝐿𝑖𝑗) ⋅ (𝑆𝑖 − 𝐿𝑖𝑗 − ∑ 𝐿̅𝑖𝑘

𝑗−1

𝑘=0
) 

სადაც, 𝑙0 პრაქტიკული მოსაზრებებიდან სადაზღვევო კომპანიის მიერ შერჩეული რიცხვია, როგორც წესი 

დამოკიდებული 𝑆𝑖-ზე (ტიპურად, მისი რაიმე ნაწილი) - ეს ის თანხაა, რომლის ტოლი ან მეტი ზარალის 

შემთხვევაში, სადაზღვევო კომპანიას ურჩევნია დამზღვევს აუნაზღაუროს დაზღვეული ობიექტის სრული 

ღირებულება დაზიანებული დაზღვეული ობიექტის (salvage-ის) სანაცვლოს. ამრიგად,  

ℙ (𝐿̅𝑖𝑗 = 𝑆𝑖 − ∑ 𝐿̅𝑖𝑘

𝑗−1

𝑘=0
) = ℙ(𝐿𝑖𝑗 ∈ [𝑙0, 𝑆𝑖]) > 0 

სახელდობრ, 

ℙ(𝐿̅𝑖0 = 𝑆𝑖) > 0. 

{𝐿̅𝑖𝑗 = 𝑆𝑖} ხდომილობას ვუწოდოთ სრული ზარალი(ს შემთხვევა), ხოლო {𝐿̅𝑖𝑗 < 𝑆𝑖} = {𝐿̅𝑖𝑗 < 𝑙0}-ს 

ნაწილობრივი ზარალი(ს შემთხვევა). სადაზღვევო პერიოდში (ტიპურად 1 წელიწადი) 𝑖-ურ პოლისზე 

მომხდარი ზარალების რაოდენობა აღვნიშნოთ 𝑁𝑖; ამრიგად, supp(𝑁) = ℕ0 ≡ {0} ∪ ℕ. ხშირად ეს 

უკანასკნელი დამოკიდებულია 𝑆𝑖-ზე. ამრიგად, სადაზღვევო პერიოდის მანძილზე 𝑖-ურ პოლისზე 
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მომხდარი ზარალების მთლიანი ოდენობა აღიწერება შემდეგი (შედგენილი) შემთხვევითი სიდიდის 

საშუალებით: 

𝐶𝑖 = ∑ 𝐿̅𝑖𝑗

𝑁𝑖

𝑗=1

 

სადაც, 𝑁𝑖 , 𝐿̅𝑖1, 𝐿̅𝑖2, … ერთობლივად დამოუკიდებელია, ხოლო 𝐿̅𝑖1, 𝐿̅𝑖2, … არის i.i.d. ტიპური სადაზღვევო 

ხელშეკრულებების დროს, აღნიშნული დაშვება არ არის ბოლომდე კორექტული, სულ მცირე იმიტომ, რომ, 

როგორც ზემოთ უკვე აღვნიშნეთ, supp(𝐿𝑖𝑗) = (0,  𝑆𝑖 − ∑ 𝐿𝑖𝑘
𝑗−1
𝑘=0 ]. ამგვარი უხერხულობების თავიდან 

ასახილებლად, ზოგადობის შეუზღუდავად დავუშვათ შემდეგი ორი პირობა: 

1. (მეტ-ნაკლებად პრაქტიკული) ნაწილობრივი ზარალის დროს, ლიმიტი (ხელშეკრულების მიხედვით) 

აღდგენადია (ანუ ლიმიტი ზღუდავს მხოლოდ ერთეულ და არა ჯამურ ზარალს) და ასეთი ზარალის 

(ქონების დაზიანების) შეკეთების შემდეგ, ქონება  არ კარგავს თავდაპირველ ღირებულებას, ანუ 

∀𝑗 ≥ 1:  supp(𝐿̅𝑖𝑗 | ∀𝑘 < 𝑗:  𝐿𝑘 ≠ 𝑆𝑖) = (0,  𝑆𝑖] 

2. (ტექნიკური) 

ℙ(𝑁𝑖 = 𝑛 > 1 & max(𝐿̅𝑖1, … , 𝐿̅𝑖𝑛) = 𝑆𝑖) = 0 

ამრიგად, ბოლო დაშვების შესაბამისად, 𝑁𝑖 შეგვიძლია განვიხილოთ, როგორც შემთხვევითი ელემენტი, 

რომლისთვისაც: 

𝑠𝑢𝑝𝑝(𝑁𝑖) = {0,  1𝑇 ,  1𝑃 ≡ 1,  2,  3,  … } 

სადაც, 1𝑇 ნიშნავს სრულ ზარალს, ხოლო 1𝑃 - ერთ ნაწილობრივ ზარალს. აღვნიშნოთ, 𝑃𝑇𝑖 ≡ ℙ(𝑁𝑖 = 1𝑇). 

სამართლიანი ტარიფიკაციის პირობა შესაძლებელია ფორმულირდეს შემდეგნაირად: რისკ-პრემია ტოლია 

საშუალო მოსალოდნელი ზარალის, ანუ: 

𝑃𝑖
(𝑟)

= 𝐸(𝐶𝑖). 

საზოგადოდ, 𝐶𝑖 დამოკიდებულია მთელ რიგ ფაქტორებზე, რომელთაგან ზოგიერთი დაკვირვებადია, 

ზოგიერთი კი არა (მაგალითად, ავტოდაზღვევის შემთხვევაში მძღოლის ტემპერამენტი, ხასიათი და ა.შ., 

რომელთა შეფასების სხვადასხვა გზები არსებობს, თუმცა ეს საკითხი სცდება აღნიშნული სტატიის 

მიზნებს). სადაზღვევო კომპანია ცდილობს გამოყოს დაკვირვებადი ფაქტორები (𝐴1, … , 𝐴𝑚), რომელზეც 

დამოკიდებულია პოტენციური ზარალიანობა და სამართლიან რისკ-პრემიას შეხედოს როგორც 

რეგრესიულ ფუნქციას: 

𝑃𝑖
(𝑟)(𝑎1, … , 𝑎𝑚) = 𝐸(𝐶𝑖 | 𝐴𝑖1 = 𝑎1, … , 𝐴𝑖𝑚 = 𝑎𝑚). 

პრაქტიკაში ერთ-ერთი მნიშვნელოვანი რისკ-ფაქტორი სწორედ რომ სადაზღვევო თანხაა; ამ უკანასკნელზე 

შევჩერდეთ ჩვენც; ამრიგად განვიხილოთ „სამართლიანი“ (რისკ-)პრემიის ფუნქცია: 

𝑃𝑖
(𝑟)(𝑠) = 𝐸(𝐶𝑖 | 𝑆𝑖 = 𝑠) = 𝐸 (∑ 𝐿̅𝑖𝑗

𝑁𝑖

𝑗=1

  |  𝑆𝑖 = 𝑠) 

პირობითი მათემატიკური ლოდინისთვის ვალდის იგივეობის ძალით: 
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𝑃𝑖
(𝑟)

(𝑠) = 𝐸(𝑁𝑖  | 𝑆𝑖 = 𝑠) ⋅ 𝐸(𝐿̅𝑖1 | 𝑆𝑖 = 𝑠). 

ამრიგად, აქტუარის ამოცანაა 𝑓(𝑠) = 𝐸(𝑁𝑖  | 𝑆𝑖 = 𝑠) და 𝑔(𝑠) = 𝐸(𝐿̅𝑖1 | 𝑆𝑖 = 𝑠) რეგრესიული წირების შეფასება.  

მათ შესაფასებლად (ვუწოდოთ მათ შესაბამისად სიხშირის მოდელი და სიმძიმის მოდელი) შესაძლებელია 

გამოყენებულ იქნეს ზოგადი წრფივი მოდელები (GLM – generalized linear models (მაგალითად, შესაბამისად, 

პუასონის რეგრესია და გამა რეგრესია)); არაპარამეტრული რეგრესიული მოდელები, როგორიცაა სპლაინ-

რეგრესიები, განზოგადებული ადიციური მოდელები (GAM) ან ალბათური სიმკვრივის გულოვან 

შეფასებებზე დაფუძნებული მოდელები, როგორებიცაა ნადარაია-უოტსონის, პრისლი-ჩაოს ან გასერ-

მიულერის გულოვანი შეფასებები; უბან-უბან მუდმივი ფუნქციით შეფასებებისთვის იზოტონიკური 

რეგრესიები, გადაწყვეტილების ხეები და ა.შ. 

პირველ რიგში შევნიშნოთ, რომ ხშირ შემთხვევაში (განსაკუთრებით, მაშინ, როდესაც სრულ ზარალებთან 

მიმართებაში კომპანიის პოლიტიკა არ არის კონსერვატიული; მაგალითად, როდესაც 𝑙0(𝑆𝑖) = 𝑟𝑆𝑖 და 0 <

𝑟 ≪ 1 (მაგ. 𝑟 ∈ [0.3, 0.5])) სიმძიმის მოდელის აგებისას სრული ზარალების გამოყენება დაკავშირებულია 

რამოდენიმე პრობლემასთან. გამოვყოთ ორი მათგანი: 

1. ხშირ შემთხვევაში განსხვავებით ნაწილობრივი ზარალისგან, სრული ზარალის მოხდენა-არმოხდენა არ 

არის დამოკიდებული სადაზღვევო თანხაზე, ანუ 

ℙ(𝑁𝑖 = 1𝑇 | 𝑆𝑖 = 𝑠) = ℙ(𝑁𝑖 = 1𝑇) 

ასეთი ზარალების 𝑔(𝑠)-ის შეფასებაში გათვალისწინება ხშირად იწვევს ე.წ. გადამეტებულ მორგებას 

(overfitting). 

შენიშვნა: გადამეტებული მორგების საფრთხე მაშინაც არსებობს, როდესაც ჩვენს მიერ მოყვანილ დაშვებას 

არ აქვს ადგილი, სახელდობრ მაშინ, როდესაც სრული ზარალი ხდება იშვიათად და მისი შესაბამისი 

ზარალის მოსალოდნელი ოდენობა მნიშვნელოვნად აღემატება ნაწილობრივი ზარალის შესაბამის 

მოსალოდნელ ოდენობას. 

2. ზოგადი წრფივი მოდელების (რაც დღესდღეობით პრაქტიკაში ყველაზე ხშირია) გამოყენების 

შემთხვევაში, ირღვევა პირობა 𝐿̅𝑖𝑗-ის პირობითი განაწილების შესახებ, ანუ დაშვება იმის შესახებ, რომ იგი 

დისპერსიული პარამეტრის შემცველ ექსპონენციალურ განაწილებათა (ED (exponential family of 

distributions)) ოჯახიდანაა, რაც ნიშნავს, რომ 

𝑓𝐿̅𝑖𝑗 | 𝑆𝑖=𝑠(𝑥) = exp (
𝑥𝜃(𝑠) − 𝛼(𝜃(𝑠))

𝜙
) 𝑐(𝑥, 𝜙) 

სხვანაირად, რომ ვთქვათ 

𝐿̅𝑖𝑗  | 𝑆𝑖 = 𝑠~𝐸𝐷(𝜇(𝑠), 𝜙, 𝛼̂, 𝑐̂ ) 

სადაც, 𝐸𝐷(𝜇(𝑠), 𝜙, 𝛼̂, 𝑐̂) აღნიშნავს, ED-ოჯახის (ფიქსირებული 𝛼̂ და 𝑐̂ ფუნქციებისთვის) ე.წ. „საშუალო-

დისპერსიული პარამეტრი“ პარამეტრიზაციას (იხ. [1], [2]). 

მეორეს მხრივ არაპარამეტრული რეგრესიული მოდელები ძალიან მგრძნობიარენი არიან „უხეში“ 

ნარევების მიმართ. 

ქვემოთ მოცემული მაგალითები (სიმულაციის შედეგები) გვაძლევს აღნიშნულის თვალსაჩინო ვიზუალურ 

ილუსტრაციებს (სტატიის მიზნიდან გამომდინარე შემოვიფარგლე განსხვავების ვიზუალური 

წარმოჩენის). 
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მაგალითი 1. დავუშვათ 𝐿̅𝑖𝑗 | 𝑆𝑖 = 𝑠 & 𝑁𝑖 ≠ 1𝑇 ~ 𝐺𝑎𝑚𝑚𝑎(𝜇(𝑠) = 0.1𝑠 + 50, 𝜙 = 0.7) და ℙ(𝑁 = 1𝑇 | 𝑆𝑖 = 𝑠) =

0.1. გრაფიკზე მოცემულია სიმულირებულ მონაცემებზე (შერჩევის რაოდენობა - 100) აგებული 1000 (GLM-

) შეფასების გრაფიკი (შავი - სრულ ზარალებთან ერთად, ლურჯი - სრული ზარალების გარეშე). 

 

მაგალითი 2: დავუშვათ 𝐿̅𝑖𝑗 | 𝑆𝑖 = 𝑠 & 𝑁𝑖 ≠ 1𝑇 ~ 𝐺𝑎𝑚𝑚𝑎 (𝜇(𝑠) = 200 +
1000

1+𝑒−0.000208𝑠+5.408 , 𝜙 = 0.7) და ℙ(𝑁 =

1𝑇 | 𝑆𝑖 = 𝑠) = 0.05. ქვემოთ მოცემულია სიმულირებულ მონაცემებზე (შერჩევის რაოდენობა - 100) აგებული 

ნადარაია-უოტსონის 1000 შეფასება, მარცხნივ სრული ზარალების გარეშე, ხოლო მარჯვნივ სრულ 

ზარალებთან ერთად.  

 

ამრიგად, უმჯობესია, თუ ჩავწერთ: 

𝐶𝑖 | 𝑆𝑖 = 𝑠 ≅ ∑ 𝐿̂𝑖𝑗

𝑁𝑃𝑖

𝑗=1

+ 𝐷𝑇𝑠 

სადაც, 𝑁𝑃𝑖 ≅ 𝑁𝑖  | 𝑁𝑖 = 1𝑇 აღწერს ნაწილობრივი ზარალების რაოდენობას, 𝐿̂𝑖𝑗 - ამ შემთხვევაში უკვე 

ნაწილობრივი ზარალის სიდიდეს, ხოლო 𝐷𝑇~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 𝑃𝑇𝑖). ამრიგად, თუ დავუშვებთ, რომ სრული 

ზარალის მოხდენა-არმოხდენის საკითხი სადაზღვევო თანხისგან დამოუკიდებელია, გვექნება: 
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𝐸(𝐶𝑖 | 𝑆𝑖 = 𝑠) = 𝑃𝑖
(𝑟)

(𝑠) = 𝐸(𝑁𝑃𝑖  | 𝑆𝑖 = 𝑠) ⋅ 𝐸(𝐿̂𝑖1 | 𝑆𝑖 = 𝑠) + 𝑃𝑇𝑖𝑠 ≡ 𝑃𝑖
(𝑟,𝑝)

(𝑠) + 𝑃𝑖
(𝑟,𝑡)

(𝑠) 

ხოლო: 

𝑅𝑖
(𝑟)

(𝑠) =
𝐸(𝑁𝑃𝑖  | 𝑆𝑖 = 𝑠) ⋅ 𝐸(𝐿̂𝑖1 | 𝑆𝑖 = 𝑠)

𝑠
+ 𝑃𝑇𝑖 ≡ 𝑅𝑖

(𝑟,𝑝)
(𝑠) + 𝑅𝑖

(𝑟,𝑡)
. 

სადაც ტოლობის მარჯვენა მხარის პირველი შესაკრებები გვიჩვენებს ნაწილობრივი ზარალების შესაბამის, 

ხოლო მეორე შესაკრები სრული ზარალების შესაბამის რისკ-პრემიასა (რომელიც 𝑠-ის წრფივი ფუნქციაა) 

და რისკ-ტარიფს (რომელიც არ არის დამოკიდებული 𝑠-ზე). 𝑃𝑖
(𝑟,𝑝)

(𝑠)-ის სტატისტიკური შეფასება 

აღვნიშნოთ 𝑃̂𝑖
(𝑟,𝑝)

(𝑠)-ით. იგი უნდა წარმოვიდგინოთ, როგორც ნამრავლი: 𝑃̂𝑖
(𝑟,𝑝)

(𝑠) = 𝜙(𝑠) ⋅ 𝜓(𝑠). დავუშვათ, 

რომ შეფასებები აიგება შემდეგი ორი ამოკრეფის საფუძველზე (ცხადია ამოკრეფები არ არიან 

დამოუკიდებლები): ((𝑆𝑖, 𝑁𝑖))
𝑖=1

𝑚
 და ((𝑆𝑗(𝑙), 𝐿̂𝑙))

𝑙=1

∑ 𝑁𝑖
𝑚
𝑖=1 ≡𝐾

 (შემთხვევას, როდესაც ამოკრეფა მოიცავს 

ინფორმაციას სხვადასხვა სიგრძის პერიოდის განმავლობაში მოქმედი პოლისების შესახებ, აქ არ 

ვიხილავთ). 

ბუნებრივია, რომ შეფასების მიმართ გვქონდეს შემდეგი მოთხოვნა: 

∑ 𝑃̂𝑖
(𝑟,𝑝)(𝑠𝑖)

𝑚

𝑖=1

= ∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 

𝑚

𝑖=1

= ∑ 𝐿̂𝑙

𝐾

𝑙=1

 

რაც ტოლფასია შემდეგის: 

∑ 𝑃̂𝑖
(𝑟,𝑝)(𝑠𝑖)𝑚

𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

=
∑ 𝑠𝑖𝑅̂𝑖

(𝑟,𝑝)(𝑠𝑖)𝑚
𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

= ⟨𝑅̂𝑖
(𝑟,𝑝)(𝑠𝑖)⟩

{𝑠𝑖}
=

∑ 𝐿̂𝑙
𝐾
𝑙=1

∑ 𝑠𝑖
𝑚
𝑖=1

= 𝐵𝐸 

 

სადაც, 𝐵𝐸 აღნიშნავს ე.წ. წაუგებლობის პრემიას (Break-Even Rate), ხოლო ⟨𝑎𝑖⟩{𝑏𝑖} კი 𝑎𝑖-ების შეწონილ 

საშუალოს 𝑏𝑖-ების მიმართ. 

ეს მოთხოვნა ნიშნავს, იმას, რომ რეგრესიულმა შეფასებებმა მხოლოდ რისკის შესაბამისად უნდა 

„გადაანაწილოს“ პრემია, საშუალო ტარიფი ან პორტფელის უცვლელობის პირობაში ჯამური პრემია კი, 

უნდა იყოს იგივე, რაც მუდმივი (𝑠-გან დამოუკიდებელი) შეფასების შემთხვევაში იქნებოდა. 

პრაქტიკოსებს შორის გავრცელებული არასწორი წარმოდგენა იმის შესახებ, რომ GLM მოდელები ამას 

თავისით უზრუნველყოფენ, ეფუძნება შემდეგ ცნობილ შედეგს: 

წინადადება: კანონიკური მაკავშირებელი ფუნქციის (link function) შემთხვევაში (მაკავშირებელ ℎ ფუნქციას 

უწოდებენ კანონიკურს, თუ ℎ−1 = 𝛼 (მაგალითად, გამა რეგრესიითვის კანონიკური მაკავშირებელი 

ფუნქციაა შებრუნებული ფუნქცია, პუასონისთვის - ლოგარითმული ფუნქცია, გაუსურისთვის - იგივური 

და ა.შ.)) სამართლიანია: 

∑ 𝑦𝑖

 

𝑖

= ∑ 𝜇̂𝑖

 

𝑖

 

სადაც, 𝜇̂𝑖 - რეგრესიით შეფასებული მნიშვნელობებია, 𝑦𝑖-ები კი ასახსნელი ცვლადის მნიშვნელობები 

ამოკრეფაში. 
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წინადადება სამართლიანია მხოლოდ კანონიკური მაკავშირებლის შემთხვევაში; სხვა შემთხვევაში 

მაგალითად 
∑ 𝜓(𝑠𝑖) 𝑚

𝑖=1

∑ 𝐿̂𝑙
𝐾
𝑙=1

 შეფარდება შესაძლებელია მნიშვნელოვნად დაშორდეს 1-ს. ქვემოთ მოცემულია 

შესაბამისი მაგალითი (1000 სიმულაციის შედეგად მიღებული შეფარდებების შესაბამისი ჰისტოგრამები და 

დეცილთა ცხრილი): 

მაგალითი 3: მარჯვენა შემთხვევაში 𝐿̂𝑙  | 𝑆𝑙 = 𝑠 ~ 𝐺𝑎𝑚𝑚𝑎(𝜇(𝑠) = 0.1𝑠 + 50, 𝜙 = 0.7), ხოლო მეორე 

შემთხვევაში 𝜙 = 3. 

 

შევნიშნოთ, რომ ჩვენს კონკრეტულ ამოცანაში, ვინაიდან ჩვენი შეფასება წარმოადგენს ორი რეგრესიული 

მოდელის ნამრავლს, ⟨𝑅̂𝑖
(𝑟,𝑝)

(𝑠𝑖)⟩
{𝑠𝑖}

= 𝐵𝐸 პირობა იმ შემთხვევაშიც არ სრულდება, როცა ორივე რეგრესიაში 

ვიყენებთ მის შესაბამის კანონიკურ მაკავშირებელ ფუნქციას, თუნდაც მხოლოდ იმიტომ, რომ  𝜓(𝑠) 

ფუნქციის შესაფასებლად გამოყენებული ამოკრეფის პირველი კოორდინატებისგან შემდგარი ვექტორი არ 

არის (𝑆1, … , 𝑆𝑚) (ანუ იგივე, რაც 𝜙(𝑠)-ის შესაფასებლად გამოყენებული ამოკრეფის შემთხვევაში). 

განვიხილოთ რისკ-პრემიის და რისკ-ტარიფის ე.წ. ნორმირებული შეფასებები: 

𝑃̂̂𝑖
(𝑟,𝑝)(𝑠) =

∑ 𝐿̂𝑙
𝐾
𝑙=1

∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 𝑚
𝑖=1

𝜙(𝑠) ⋅ 𝜓(𝑠) ≡ 𝒥𝜙(𝑠) ⋅ 𝜓(𝑠) ≡ 𝒥𝑃̂𝑖
(𝑟,𝑝)(𝑠) 

და 

𝑅̂̂𝑖
(𝑟,𝑝)(𝑠) =

𝒥𝜙(𝑠) ⋅ 𝜓(𝑠)

𝑠
=

∑ 𝐿̂𝑙
𝐾
𝑙=1

∑ 𝑠𝑖
𝑚
𝑖=1

⁄

∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 𝑚
𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

⁄

𝜙(𝑠) ⋅ 𝜓(𝑠)

𝑠
≡

𝐵𝐸

𝑏̃

𝜙(𝑠) ⋅ 𝜓(𝑠)

𝑠
 

 

𝑅̂̂𝑖
(𝑟,𝑝)(𝑠)-ს შემდეგი მოსაზრებით შეგვიძლიავუწოდოთ წაუგებლობის (brake-even) ფუნქცია: 
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𝐵𝐸 =
∑ 𝐿̂𝑙

𝐾
𝑙=1

∑ 𝑠𝑖
𝑚
𝑖=1

=
∑ 𝐿̂𝑙

𝐾
𝑙=1

∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 𝑚
𝑖=1

⋅
∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 𝑚

𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

=
∑

𝒥𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖)
𝑠𝑖

𝑠𝑖
𝑚
𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

=
∑ 𝑅̂̂𝑖

(𝑟,𝑝)
(𝑠𝑖)𝑠𝑖

𝑚
𝑖=1

∑ 𝑠𝑖
𝑚
𝑖=1

= 

=
∫ 𝑅̂̂𝑖

(𝑟,𝑝)
(𝑠)𝑠𝑑𝐹̂𝑆,𝑛(𝑠)

∞

0

∫ 𝑠𝑑𝐹̂𝑆,𝑛(𝑠)
∞

0

≈
∫ 𝑅̂̂𝑖

(𝑟,𝑝)
(𝑠)𝑠𝑑𝐹𝑆(𝑠)

∞

0

∫ 𝑠𝑑𝐹𝑆(𝑠)
∞

0

=
∫ 𝑅̂̂𝑖

(𝑟,𝑝)
(𝑠)𝑠𝑓𝑆(𝑠)𝑑𝑠

∞

0

∫ 𝑠𝑓𝑆(𝑠)𝑑𝑠
∞

0

 

სადაც, 𝐹̂𝑆,𝑛(𝑠) არის (𝑆1, … , 𝑆𝑚) ამოკრეფის შესაბამისი ემპირიული განაწილების ფუნქცია, ხოლო 𝐹𝑆 - 𝑆 

შემთხვევითი სიდიდის თეორიული განაწილების ფუნქცია.  

მოყვანილი ნორმირებული შეფასებები რამოდენიმე პრაქტიკული მოსაზრებით არის მნიშვნელოვანი: 

1. GLM-ის გამოყენებისას მაკავშირებელი ფუნქციის არჩევაში თავისუფალი არჩევანის გაჩენა. 

2. არაპარამეტრული რეგრესიული მეთოდების (რომლებსაც ზემოთ მოყვანილი სასურველი თვისება 

თავისთავად არ გააჩნიათ) გამოყენების საშუალება. 

3. ტარიფების მართვის მოქნილი პრაქტიკული ინსტრუმენტი (შედეგად, ბიზნეს გარემოს ცვლილებებზე 

მყისიერი (სწრაფი) რეაგირების საშუალება). 

4. ტარიფის შეფასებები სხვადასხვა სანდოობით. 

მეოთხე პუნქტთან დაკავშირებული მოკლე შენიშვნა: რეგრესიებისთვის, როგორც წესი, განიხილავენ ორი 

ტიპის სანდოობის ინტერვალებს: 1. წერტილოვანს, ანუ სანდოობის ინტერვალებს 𝐸(𝑌 | 𝑋 = 𝑥0) ტიპის 

თეორიული სიდიდეებისთვის (პარამეტრულ და არაპარამეტრულ რეგრესიებში) და 2. სანდოობის 

ინტერვალებს რეგრესიული კოეფიციენტებისთვის (ტიპურად, პარამეტრულ შემთხვევებში). 

აქტუარისთვის კი მნიშვნელოვანია სანდოობის შეფასება/განსაზღრა მთლიანი ტარიფიკაციისათვის. 

ამისთვის ბუნებრივია, თუ განვსაზღვრავთ ფუნქციის რისკ-ნორმას, ანუ შემოვიტანთ რისკ-დალაგების 

მიმართებას. რისკ-ნორმის ერთ-ერთ ყველაზე ბუნებრივ ფორმად შეგვიძლია განვიხილოთ შემდეგი: 

‖𝑅‖𝑟𝑖𝑠𝑘 = ∫ |𝑅(𝑠)|𝑠𝑓𝑆(𝑠)𝑑𝑠
 

𝒮

 

ამრიგად, ჩვენს შემთხვევაში გვექნება: 

‖𝑅̂̂𝑖
(𝑟,𝑝)

‖
𝑟𝑖𝑠𝑘

= ∫
∑ 𝐿̂𝑙

𝐾
𝑙=1

∑ 𝜙(𝑠𝑖) ⋅ 𝜓(𝑠𝑖) 𝑚
𝑖=1

𝜙(𝑠) ⋅ 𝜓(𝑠)

𝑠
𝑠𝑓𝑆(𝑠)𝑑𝑠

 

𝒮

= 

= ∫
∑ 𝐿̂𝑙

𝐾
𝑙=1

∫ 𝑃̂̂𝑖
(𝑟,𝑝)(𝑠)𝑑𝐹̂𝑆,𝑛(𝑠)

 

𝒮

𝜙(𝑠) ⋅ 𝜓(𝑠)

𝑠
𝑠𝑓𝑆(𝑠)𝑑𝑠 = ∫

∑ 𝐿̂𝑙
𝐾
𝑙=1

∫ 𝑃̂̂𝑖
(𝑟,𝑝)(𝑠)𝑑𝐹̂𝑆,𝑛(𝑠)

 

𝒮

𝑃̂̂𝑖
(𝑟,𝑝)(𝑠)𝐹𝑆(𝑠) ≈ ∑ 𝐿̂𝑙

𝐾

𝑙=1

= 𝑚
 

𝒮

 

𝒮

 

ხოლო, 𝑚-ის შეფასება სხვადასხვა სანდოობით უკვე სტანდარტული სტატისტიკური ამოცანაა, 

რომლისთვისაც შეგვიძლია გამოვიყენოთ, მაგალითად, ბუთსტრაპის მიდგომები. 

 

გამოყენებული ლიტერატურა: 

1. M. Denuit, D. Hainaut, J. Trufin – Effective Statistical Learning Methods for Actuaries I (GLM and Extensions)  

2. P. Dunn, G. Smyth – Generalized Linear Models with Examples in R 

3. J. Faraway – Extending the Linear Model with R  

 


