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Abstract

We consider financial market with yield process of risky asset sat-
isfying the so-called structure condition and construct optimal mean-
variance robust hedging strategy for misspecified asset price process.
In particular, we study the stochastic volatility process with fully de-
fined volatility process with small randomness and misspecified asset
price process.
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1 A financial market model

Let (2, F,F) = (Ft)o<t<r, P) be a filtered probability space with filtration
F satisfying the usual conditions, where T € (0, o0 is a fixed time horizon.
Assume that Fg is trivial and Fr = F.

There exist d 4+ 1, d > 1, primitive assets: one bond, whose price process
is assumed to be 1 at all times and d risky assets (stocks), whose R%-valued
price process X = (X;)o<t<r is a continuous semimartingale given by the
relation

dXt = dlag(Xt)th, XD > 07 (11)



where diag(X) denotes the diagonal d x d-matrix with diagonal elements
X1 ..., X% and the yield process R = (R;)o<i<r is a R-valued continuous
semimartingale satisfying the structure condition (SC). That is (see Schweizer

6]),
th == d<M>t)\t + th, RO - 0, (12)

where M = (]\Z)ogth is a R%-valued continuous martingale, M € MG 10o(P),
A = (M)o<i<r is a F-predictable R%valued process, and the mean-variance
tradeoff (MVT) process K = (K)o<t<r of process R

t o~ o~
K, = / NA(DA, = (V- M) <00 P-as, te[0.T].  (13)
0

Remark 1. Remember that all vectors are assumed to be column vectors.

Suppose that the martingale M has the form

M=0-M, (1.

B
S~—

where M = (M;)o<i<r is a R%valued continuous martingale, M € Mg, .(P),
o = (0¢)o<t<T is a d X d-matrix valued, F-predictable process with rank(o;) =
d for any t, P-a.s., the process (0; ')o<i<r is locally bounded, and

(M = /O D (Mol < 0. Poas (1.5)

Assume now that the following condition is satisfied:
There exists fixed R%-valued, F-predictable process k = (k;)o<i<r such
that
A= \o) = (o)) k. (1.6)

In this case, from (1.2) we get

AR, = d(M) N\ + dM, = 0d(M)0(0?) ks + od M,
= O't(d<M>tk't + th) (17)

and

t N t
K, - / NA() A, = / k(o)) ord{M),04(0])
0 0

t
= / k;d(Mﬁk’t - <k’ . M)t = ICt.
0



From (1.3) we have

Ki < oo, P-as. forall tel0,T]. (1.8)
Thus, if we introduce the process M = (M} )o<i< by the relation

dM; = d{(M)k; +dM,, M =0, (1.9)

then the MVT process K = (K;)o<i<r of R%valued semimartingale M° is
finite, and hence M° satisfies SC.
Finally, the scheme (1.1), (1.2), (1.4), (1.6) and (1.9) can be rewritten in
the following form:
dX, = diag(X,)dR:, X, >0,
dR; = 0, dM?, Ry =0, (1.10)
dM{ = d(M)ik; + dM,, My =0,

where ¢ and k satisfy (1.5) and (1.8), respectively.
This is our financial market model.

2 Stochastic volatility process with small dif-
fusion coefficient

Denote by Ball,(0,7), r € [0,00), the closed r-radius ball in the space L =
Lo (dt x dP), with the center at the origin, and let

H = {h = {hi;}, i,5,= 1,/\d : h is F-predictable, d x d-matrix valued
process, rank(h)=d, hy € Ball,(0,r), r € [0,00)}.
The class H is called the class of alternatives.

Fix the value of small parameter 6 > 0, as well as d x d-matrix valued
F-predictable process 0° = (09)p<i<7, rank(c?) = d, with

T
/ old(M),(c}) < o0 P-a.s.
0

Denote

As={oc : 0 =0+ 6h, heH}
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As an example, consider now particular case.
Let a(t,y) be a drift coefficient of volatility process. Introduce the pro-
cesses described by the following system of SDE:

dXt - Xt th7 X() > 0,
dR, = (00 4 6hy)dM?, Ry =0, (2.1)
dY; =a(t,Y;)dt +edwy, Yy=0, 0<t<T,

where
dM? = kydt + dw?,

h € H and o} is the center of the confidence interval of volatility, which
shrinks to )
o, = f2(V3).

Here, w = (w’, w?) is a standard two-dimensional Wiener process, defined on
complete probability space (2, F, P), F* = (F}")o<t<r is the Paugmentation
of the natural filtration F}* = o(w,,0 < s < t), 0 <t < T, generated by
w, f(+) is a continuous one-to-one positive locally bounded function (e.g.,
f(z) = €®). Assume that the system (2.1) has a unique strong solution.

As a result, we get the so-called stochastic volatility process with small
randomness and misspecified asset price process.

3 Construction of optimal mean-variance ro-
bust hedging strategy

Consider the set of processes {R? (or X7?), o € As}, which represents the
misspecification of asset price process.
Define the class of admissible trading strategies © = ©(a?).

Definition 1. The class © = O(0") is a class of R%-valued F-predictable
processes 6 = (0;)o<¢<r such that

T T
E / 060d(M)(00)6, < o0, E / (M6, < 0. (3.1)
0 0

Let # € O be the dollar amount (rather than the number of shares)
invested in the stock X7, o € As. Then, for each o € As, the trading gains



induced by the self-financing portfolio strategy associated to 6 has the form
t

Gi(0,0) — / GdRT, 0<t<T (3.2)
0

where R? = (RY )o<i<r is the yield process given by (1.10).
Introduce the notation

5= {Q ~P % € L*(P), M"is a Q-local martingale},

and suppose that
(c.1) M £ ).
Introduce the condition:

(c.2) There exists equivalent local martingale measure (ELMM) @, such that
the density process z = 29 satisfies the reverse Holder inequality Ry(P),
see definition in [4].

It is well-known, that under the conditions (c.1) and (c.2) the density
process z = (Z;)o<i<r of the variance-optimal ELMM satisfies Ro(P) as well,
see Delbaen et al. [1].

Now under the conditions (c.1) and (c.2) the r.v. Gr(o,0) € L*(P),
Vo € As, and the space Gr(o,0) is closed in L*(P), Vo € As (see, e.g.,
Theorem 2 of Rheinldnder and Schweizer [4]).

Remark 2. 1. Condition £ fOT 0,d(M).;0; < oo from (3.1) is equivalent to

the condition fOT 0, hyd(M)¢h,0, < 0o, Vhy € H, since each component (h;;)
of matrix h is bounded (by ), and #H contains the constants.
2. Under conditions (c.1) and (c.2),

E(/OT\9;a$d<M>tkt|)2 gconst.E/o 0,od(M)(c?)'6,

T 2 T
E ( / |0;htd<M>tk’t|) S const. &/ / Hzlfhtd<M>th;0t
0 0

and

T
< Const.E/ O,d(M),0;, Vh, € H,
0

as it follows from above mentioned Theorem 2 of [4] (namely, from the equal-

ity © := L*(M) N L*(A) = L*(M)) and definition of class H.
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A contingent claim is an Fp-measurable square-integrable r.v. H, which
models the payoff from a financial product at the maturity date 7.

The problem we are interested in is to find the robust hedging strategy
for a contingent claim H in the above described incomplete financial market
model with misspecified asset price process X7, o € Ag, using mean-variance
approach.

For each o € Ajs, the total loss of a hedger, who starts with the initial
capital x, uses the strategy 6, believes that the stock price process follows
X7, and has to pay a random amount H at the date T, is H — x — Gr(0,0).

Denote

J(0,0) = E(H —x — Gr(0,0))* (3.3)

One setting of the robust mean-variance hedging problem consist in solv-
ing the optimization problem

minimize sup J(o,0) over all strategies 6 € ©. (3.4)
ocEAs

We “slightly” change this problem using the approach developed in Toron-
jadze [7] which based on the following approximation

sup J(o,0) = exp { sup J (0° 4 6h, 9)}

o€A;s heH
0
~ {sup [IHJ(UO,Q) + 6—Dj(0 ,h,H)] }

heH j(O’O,e)
0 DJ (0" h,0)
=J(0",0)exp {551615 —j(a(),e) ;
where
0 _d 0 . J(@"+0h,0)—T(c°,0)
DI(0,h.6) i= g5 T(0 + 0 0)| = 1imy 5

is the Gateaux differential of the functional J at the point ¢ in the direc-
tion h.

Approximate (in leading order 0) the optimization problem (3.4) by the
problem

o DJ(a°% I 9)}
minimize J (02, 6)e {5su —_—
w0 J(@0) e 080 = 700 )

over all strategies 6 € ©. (3.5)



Note that each solution 6* of the problem (3.5) minimizes J(c°, ) under
the constraint

DJ(0° h,0 DJ(0°, h, 6"

new  J(0%0) new  J(00,0%)
This characterization of an optimal strategy 6* of the problem (3.5) leads
to the

Definition 2. The trading strategy 6* € © is called optimal mean-variance
robust trading strategy against the class of alternatives H if it is a solution
of the optimization problem

minimize J (¢°,6) over all § € O, subject to constraint
DJ (" h,0)
sup ———= < ¢,
hG?I-)l j(O-O’ 9) N

where ¢ is some generic constant.

(3.6)

Remark 3. In contrast to “mean-variance robust” traiding strategy, which
associates with optimization problem (3.4) and control theory, we find the
“optimal mean-variance robust” trading strategy in the sense of Definition 2.
Such approach and term are common in robust statistics theory (see, e.g.,
Hampel et al. [3], Rieder [5]).

To solve the problem (3.6), we need to calculate DJ (¢, h, 0).
Following Rheinldnder and Schweizer [4] and Gourieroux et al. [2], intro-
duce the probability measure @ ~ P on Fp by the relation
U - %
dQ = % dP (and hence dQ = % dP). (3.7)

Using Proposition 5.1 of Gourieroux et al. [2], we can write
T 2
j(U,G):qu(H—I—/ szRf)
0
~ 32 T 2

=2, E¢ = (H —x— / OgathtO)

0
0 Ha r n [T MY\’
552 o [ o2 - [ ) i)
0

t

=T (0,4, 9", (3-8)



where
¢
V(o) = o0, YP(o) = +/ 0o dM? — Qo M), 0<t<T. (3.9)
0

Thus
Uy () = U (0") + 00, (h), (o) = ¥ (0°) + oy (h),
where
Gi(h) = g (h) — z.
Let (following Rheinlénder and Schweizer [4])

zT T

T
L E(g'z})) + / (WY dU, + Ly (3.10)
& 0

be the Galtchouk-Kunita-Watanabe decomposition of r.v. %Zg w.r.t R+
valued Q-local martingale U = (2, M7O, %), where T = (YOH PLHY ¢
L*(U,Q), the space of F-predictable processes ¢ such that [¢'dU € M?*(Q)

of martingales, and L € M(Q),loc(é), L is Q-strongly orthogonal to U.
Denote

Y=Y and ¢ = (%), (3.11)
Then, using (3.8), (3.9) and (3.10) we can write for each h
T (0" +oh, ) = T (0%, 4) +0- 22"

< [(o- 9L 2) ~ 1o+ [ to” —tyav] [ @oya)

+6%27 B9 { /0 T(Et(h))’dUt] 2

=gt +-2582 [ tet) - o yau, [ @amyau]

[T 2
+62Z5 1 EC {/ (th(h))’dUt} . (3.12)
0
Using Proposition 8 of Rheinlédnder and Schweizer [4], we have for each h
20 r_ , _ o
267(h0) = { [ @wydv: 5w e Q).
0
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and hence, by (3.2),

(| T(zz)t(h))'dvtf

T 2
= BO20G2(h,0) = EGE(h,0) = % E( / gthg)
0

Zp

T 2 T T 2

:zOE( / H’hth) —§0E< / Oihd(M)iky + / eghtht>
0 0 ,
< const. |: </ |8/ht kt> +E(/ ththt> :|

< const.r2E/ 0,d(M),0, < oo, (3.13)
0

as it follows from Remark 2.

Further,
(2] [ " (a(0) — YU, / T@(h))'du} )

2

< 59 /Oth(aO)—wt)dUt)z / B <oo (1)

From these estimates we conclude that:
_ T _
1) DI . 9) =25 B2 | (o) — ol YdU)B ) < 0. (315)
0

thanks to (3.12), with evident notations in argument of functional DJ.
2) DI (6, h,1, 1) =0 = 0, since (0) = 0 by (3.11) and (3.9). Thus

sup DJ (6%, h,1p,v) > 0. (3.16)
heM

3) From (3.14) and (3.13) we get
(Dj(007 h7 7%@))2 S const. 5’/627’2

< E9 / (6(0°) — YA (0(0) — ) E / 0Ld(M),0, < oo,



Thus DJ (6°, h,1,1)) is estimated by the expression which does not depend
on h, and is equal to zero if we substitute 1;(c%) = 1, 0 <t < T.
Hence, by (3.16),

0 < sup DT (0%, h 16, T)] e < sup [DT (0,10, D)L = 0. (3.17)
heH heH

Further, from (3.16) it follows that we can take ¢ € [0,00) in (3.6).
Now substituting ¢ = ¥ into J(¢°,v) and DJ (¢°, h, v, ), we get
I ") =minJ (o, 0) = 5 (BPH —2) + 5 EOL;
(see Lemma 5.1 of Gourieroux et al. [2]) and

0 H )
qup DI 07 P)

heH \7<O_07 ¢H)

Hence the constraint of problem (3.6) is satisfied.

Remark 4. If v = EPH and Ly =0, then we get
DI (0% h, ") 0

su =—,
hen  J@09T) 0

which is assumed to be zero, since if we consider the shifted risk func-
tional J = J + 1, the optimization problem and the optimal trading strat-
egy will not change, but DJ(¢% h,vf ) = DJ(c° h," ) = 0 and
T(0% ") = 1.

Finally, using Proposition 8 of Rheinlander and Schweizer [4], we arrive
at the following

Theorem. In model (1.10), under conditions (c.1) and (c.2), the optimal
mean-variance robust trading strategy (in the sense of Definition 1) is given
by the formula

0 = ((0))) [ + GV = (Y y)], 0<t<T, (3.18)

where

% MO\
wl{{:( ?7H7¢1€1’H>7 Ut: (Z_OyTtZ'O),

EO ! H\/
V=2 :c+/< 1ydu, ),
2t 0
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Y and ¢ are given by the relations (3.10) and Zr = Zy + fOT CidMY, respec-
tively.

Such and related problems are considered in the papers [8, 9, 10].
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